Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import os | |
| import requests | |
| import re # To help clean up leading whitespace | |
| # Langchain and HuggingFace | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_groq import ChatGroq | |
| from langchain.chains import RetrievalQA | |
| # Load the .env file (if using it) | |
| groq_api_key = os.getenv("GROQ_API_KEY") | |
| # Load embeddings, model, and vector store | |
| # Singleton, prevent multiple initializations | |
| def init_chain(): | |
| model_kwargs = {'trust_remote_code': True} | |
| embedding = HuggingFaceEmbeddings(model_name='nomic-ai/nomic-embed-text-v1.5', model_kwargs=model_kwargs) | |
| llm = ChatGroq(groq_api_key=groq_api_key, model_name="openai/gpt-oss-20b", temperature=0.1) | |
| vectordb = Chroma(persist_directory='updated_CSPCDB2', embedding_function=embedding) | |
| # Create chain | |
| chain = RetrievalQA.from_chain_type(llm=llm, | |
| chain_type="stuff", | |
| retriever=vectordb.as_retriever(k=5), | |
| return_source_documents=True) | |
| return chain | |
| # Streamlit app layout | |
| st.set_page_config( | |
| page_title="CSPC Citizens Charter Conversational Agent", | |
| page_icon="cspclogo.png" | |
| ) | |
| # Custom CSS for styling | |
| st.markdown( | |
| """ | |
| <style> | |
| # .main {background-color: #f4f4f4;} | |
| .title {text-align: center; font-size: 30px; font-weight: bold; color: #ffffff;} | |
| .subtitle {text-align: center; font-size: 18px; font-weight: bold; color: #dddddd;} | |
| .category {font-size: 16px; font-weight: bold; color: #222;} | |
| .details {font-size: 14px; color: #bbbbbb; margin-left: 25px; margin-top: -10px; margin-bottom: 5px;} | |
| .details1 {font-size: 14px; color: #bbbbbb; margin-left: 25px; margin-top: -10px; margin-bottom: 10px;} | |
| .team {text-align: center; font-size: 14px; font-weight: bold; color: #777; margin-top: 20px;} | |
| .resources a {color: #0066cc; text-decoration: none; font-weight: bold;} | |
| .resources a:hover {color: #003366;} | |
| </style> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| with st.sidebar: | |
| # App title | |
| st.markdown('<p class="title">CSPC Conversational Agent</p>', unsafe_allow_html=True) | |
| st.markdown('<p class="subtitle">Your go-to assistant for the Citizen’s Charter of CSPC!</p>', unsafe_allow_html=True) | |
| # Categories | |
| st.markdown('''✔️**About CSPC:**''') | |
| st.markdown('<p class="details">History, Core Values, Mission and Vision</p>', unsafe_allow_html=True) | |
| st.markdown('''✔️**Admission & Graduation:**''') | |
| st.markdown('<p class="details">Apply, Requirements, Process, Graduation</p>', unsafe_allow_html=True) | |
| st.markdown('''✔️**Student Services:**''') | |
| st.markdown('<p class="details">Scholarships, Orgs, Facilities</p>', unsafe_allow_html=True) | |
| st.markdown('''✔️**Academics:**''') | |
| st.markdown('<p class="details">Degrees, Courses, Faculty</p>', unsafe_allow_html=True) | |
| st.markdown('''✔️**Officials:**''') | |
| st.markdown('<p class="details1">President, VPs, Deans, Admin</p>', unsafe_allow_html=True) | |
| # Links to resources | |
| st.markdown("### 🔗 Quick Access to Resources") | |
| st.markdown( | |
| """ | |
| 📄 [CSPC Citizen’s Charter](https://cspc.edu.ph/governance/citizens-charter/) | |
| 🏛️ [About CSPC](https://cspc.edu.ph/about/) | |
| 📋 [College Officials](https://cspc.edu.ph/college-officials/) | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # Store LLM generated responses | |
| if "messages" not in st.session_state: | |
| st.session_state.chain = init_chain() | |
| st.session_state.messages = [{"role": "assistant", "content": "Hello! I am your Conversational Agent for the Citizens Charter of Camarines Sur Polytechnic Colleges (CSPC). How may I assist you today?"}] | |
| st.session_state.query_counter = 0 # Track the number of user queries | |
| st.session_state.conversation_history = "" # Keep track of history for the LLM | |
| def generate_response(prompt_input): | |
| try: | |
| # Retrieve vector database context using ONLY the current user input | |
| retriever = st.session_state.chain.retriever | |
| relevant_context = retriever.get_relevant_documents(prompt_input) # Retrieve context only for the current prompt | |
| # Format the input for the chain with the retrieved context | |
| formatted_input = ( | |
| f"You are a Conversational Agent for the Citizens Charter of Camarines Sur Polytechnic Colleges (CSPC). " | |
| f"Your purpose is to provide accurate and helpful information about CSPC's policies, procedures, and services as outlined in the Citizens Charter. " | |
| f"When responding to user queries:\n" | |
| f"1. Always prioritize information from the provided context (Citizens Charter or other CSPC resources).\n" | |
| f"2. Be concise, clear, and professional in your responses.\n" | |
| f"3. If the user's question is outside the scope of the Citizens Charter, politely inform them and suggest relevant resources or departments they can contact.\n\n" | |
| f"Context:\n" | |
| f"{' '.join([doc.page_content for doc in relevant_context])}\n\n" | |
| f"Conversation:\n{st.session_state.conversation_history}user: {prompt_input}\n" | |
| ) | |
| # Invoke the RetrievalQA chain directly with the formatted input | |
| res = st.session_state.chain.invoke({"query": formatted_input}) | |
| # Process the response text | |
| result_text = res['result'] | |
| # Clean up prefixing phrases and capitalize the first letter | |
| if result_text.startswith('According to the provided context, '): | |
| result_text = result_text[35:].strip() | |
| elif result_text.startswith('Based on the provided context, '): | |
| result_text = result_text[31:].strip() | |
| elif result_text.startswith('According to the provided text, '): | |
| result_text = result_text[34:].strip() | |
| elif result_text.startswith('According to the context, '): | |
| result_text = result_text[26:].strip() | |
| # Ensure the first letter is uppercase | |
| result_text = result_text[0].upper() + result_text[1:] if result_text else result_text | |
| # Extract and format sources (if available) | |
| sources = [] | |
| for doc in relevant_context: | |
| source_path = doc.metadata.get('source', '') | |
| formatted_source = source_path[122:-4] if source_path else "Unknown source" | |
| sources.append(formatted_source) | |
| # Remove duplicates and combine into a single string | |
| unique_sources = list(set(sources)) | |
| source_list = ", ".join(unique_sources) | |
| # # Combine response text with sources | |
| # result_text += f"\n\n**Sources:** {source_list}" if source_list else "\n\n**Sources:** None" | |
| # Update conversation history | |
| st.session_state.conversation_history += f"user: {prompt_input}\nassistant: {result_text}\n" | |
| return result_text | |
| except Exception as e: | |
| # Handle rate limit or other errors gracefully | |
| if "rate_limit_exceeded" in str(e).lower(): | |
| return "⚠️ Rate limit exceeded. Please clear the chat history and try again." | |
| else: | |
| return f"❌ An error occurred: {str(e)}" | |
| # Display chat messages | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.write(message["content"]) | |
| # User-provided prompt for input box | |
| if prompt := st.chat_input(placeholder="Ask a question..."): | |
| # Increment query counter | |
| st.session_state.query_counter += 1 | |
| # Append user query to session state | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| with st.chat_message("user"): | |
| st.write(prompt) | |
| # Generate and display placeholder for assistant response | |
| with st.chat_message("assistant"): | |
| message_placeholder = st.empty() # Placeholder for response while it's being generated | |
| with st.spinner("Generating response..."): | |
| # Use conversation history when generating response | |
| response = generate_response(prompt) | |
| message_placeholder.markdown(response) # Replace placeholder with actual response | |
| st.session_state.messages.append({"role": "assistant", "content": response}) | |
| # Check if query counter has reached the limit | |
| if st.session_state.query_counter >= 10: | |
| st.sidebar.warning("Conversation context has been reset after 10 queries.") | |
| st.session_state.query_counter = 0 # Reset the counter | |
| st.session_state.conversation_history = "" # Clear conversation history for the LLM | |
| # Clear chat history function | |
| def clear_chat_history(): | |
| # Clear chat messages (reset the assistant greeting) | |
| st.session_state.messages = [{"role": "assistant", "content": "Hello! I am your Conversational Agent for the Citizens Charter of Camarines Sur Polytechnic Colleges (CSPC). How may I assist you today?"}] | |
| # Reinitialize the chain to clear any stored history (ensures it forgets previous user inputs) | |
| st.session_state.chain = init_chain() | |
| # Clear the query counter and conversation history | |
| st.session_state.query_counter = 0 | |
| st.session_state.conversation_history = "" | |
| st.sidebar.button('Clear Chat History', on_click=clear_chat_history) | |
| # Footer | |
| st.sidebar.markdown('<p class="team">Developed by Team XceptionNet</p>', unsafe_allow_html=True) |