Spaces:
Sleeping
Sleeping
Update app_streamlit.py
Browse files- app_streamlit.py +16 -0
app_streamlit.py
CHANGED
|
@@ -8,6 +8,7 @@ from langchain.vectorstores import Chroma
|
|
| 8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 9 |
from langchain_groq import ChatGroq
|
| 10 |
from langchain.chains import RetrievalQA
|
|
|
|
| 11 |
|
| 12 |
# Load the .env file (if using it)
|
| 13 |
load_dotenv()
|
|
@@ -16,6 +17,21 @@ groq_api_key = os.getenv("GROQ_API_KEY")
|
|
| 16 |
# Load embeddings, model, and vector store
|
| 17 |
@st.cache_resource # Singleton, prevent multiple initializations
|
| 18 |
def init_chain():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
model_kwargs = {'trust_remote_code': True}
|
| 20 |
embedding = HuggingFaceEmbeddings(model_name='nomic-ai/nomic-embed-text-v1.5', model_kwargs=model_kwargs)
|
| 21 |
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192", temperature=0.2)
|
|
|
|
| 8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 9 |
from langchain_groq import ChatGroq
|
| 10 |
from langchain.chains import RetrievalQA
|
| 11 |
+
import zipfile
|
| 12 |
|
| 13 |
# Load the .env file (if using it)
|
| 14 |
load_dotenv()
|
|
|
|
| 17 |
# Load embeddings, model, and vector store
|
| 18 |
@st.cache_resource # Singleton, prevent multiple initializations
|
| 19 |
def init_chain():
|
| 20 |
+
|
| 21 |
+
# Specify the path to the .zip file
|
| 22 |
+
zip_file_path = "cspc_db.zip"
|
| 23 |
+
|
| 24 |
+
# Specify the directory where you want to extract the files
|
| 25 |
+
extract_to_path = "cspc_db"
|
| 26 |
+
|
| 27 |
+
# Check if the destination directory exists, and if not, create it
|
| 28 |
+
if not os.path.exists(extract_to_path):
|
| 29 |
+
os.makedirs(extract_to_path)
|
| 30 |
+
|
| 31 |
+
# Unzip the file
|
| 32 |
+
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
| 33 |
+
zip_ref.extractall(extract_to_path)
|
| 34 |
+
|
| 35 |
model_kwargs = {'trust_remote_code': True}
|
| 36 |
embedding = HuggingFaceEmbeddings(model_name='nomic-ai/nomic-embed-text-v1.5', model_kwargs=model_kwargs)
|
| 37 |
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192", temperature=0.2)
|