Fakypedia
Browse files- app.py +59 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import spaces
|
| 5 |
+
|
| 6 |
+
title = "Fakypedia"
|
| 7 |
+
|
| 8 |
+
DESCRIPTION = """\
|
| 9 |
+
# Genarate a silly article
|
| 10 |
+
A bilingual (English and Hebrew) [nonsense generation model](https://huggingface.co/Norod78/SmolLM-135M-FakyPedia-EngHeb) which produces silly Wikipedia-like abstract text.
|
| 11 |
+
Tap on the \"Submit\" button to generate a silly and/or fake \"Wikipedia-Like\" article based on the input title
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
article = "<p>This model extended the tokenizer of and is a fine-tuned of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct)</p>"
|
| 15 |
+
|
| 16 |
+
CUDA_AVAILABLE = torch.cuda.is_available()
|
| 17 |
+
device = torch.device("cuda" if CUDA_AVAILABLE else "cpu")
|
| 18 |
+
|
| 19 |
+
model_id = "Norod78/SmolLM-135M-FakyPedia-EngHeb"
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 21 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 22 |
+
bos_token = tokenizer.bos_token
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
|
| 24 |
+
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
| 25 |
+
|
| 26 |
+
torch.manual_seed(1234)
|
| 27 |
+
|
| 28 |
+
@spaces.GPU
|
| 29 |
+
def generate_fakypedia(article_title: str):
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
result = ""
|
| 32 |
+
string_to_tokenize= f"{bos_token}\\%{article_title}"
|
| 33 |
+
input_ids = tokenizer( string_to_tokenize, return_tensors="pt").input_ids.to(device)
|
| 34 |
+
sample_outputs = model.generate(input_ids, do_sample=True,repetition_penalty=1.2, temperature=0.5, max_length=96, num_return_sequences=3)
|
| 35 |
+
if article_title == None or len(article_title) == 0:
|
| 36 |
+
result += f"# Fakypedia results with random titles \n"
|
| 37 |
+
article_title = ""
|
| 38 |
+
else:
|
| 39 |
+
result += f"# Fakypedia results for \"{article_title}\" \n"
|
| 40 |
+
for i, sample_output in enumerate(sample_outputs):
|
| 41 |
+
decoded_output = tokenizer.decode(sample_output, skip_special_tokens=True)
|
| 42 |
+
decoded_output = decoded_output.replace(f"\%{article_title}", f"## {article_title}").replace("\%", " ").replace("\\n", " \n")
|
| 43 |
+
decoded_output = decoded_output.replace("## \n", "\n")
|
| 44 |
+
result += "{}\n".format(decoded_output)
|
| 45 |
+
return result
|
| 46 |
+
|
| 47 |
+
demo = gr.Interface(
|
| 48 |
+
generate_fakypedia,
|
| 49 |
+
inputs=gr.Textbox(lines=1, label="Enter a title for the article (or leave blank for a random one)"),
|
| 50 |
+
outputs=gr.Markdown(label="Generated fakypedia article"),
|
| 51 |
+
title=title,
|
| 52 |
+
description=DESCRIPTION,
|
| 53 |
+
article=article,
|
| 54 |
+
examples=["Hugging face", "A socially awkward potato", "讚讜专讜谉 讗讚诇专", ""],
|
| 55 |
+
allow_flagging="never",
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
demo.queue()
|
| 59 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
accelerate
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
tokenizers
|
| 6 |
+
spaces
|
| 7 |
+
numpy
|