File size: 6,668 Bytes
ce3b288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import cv2
import torch
from PIL import Image
from pathlib import Path
from threading import Thread
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
import spaces
import time

TITLE = "  诪讜讚诇 诪讘讜住住 讙诪讛 3 诇讬爪讬专转 砖讬专讬诐 诪讟讜驻砖讬诐 讘注讘专讬转   "
DESCRIPTION= """    
       谞讬转谉 诇讘拽砖 砖讬专 注诇 讘住讬住 讟拽住讟, 转诪讜谞讛 讜讜讬讚讗讜   
       
    [讛诪讜讚诇 讝诪讬谉 诇讛讜专讚讛](https://huggingface.co/Norod78/gemma-3_4b_hebrew-lyrics-finetune)    

      讛诪讜讚诇 讻旨讜旨讬址旨讬诇 注状讬 [讚讜专讜谉 讗讚诇专](https://linktr.ee/Norod78)
       """

# model config
model_4b_name = "Norod78/gemma-3_4b_hebrew-lyrics-finetune"
model_4b = Gemma3ForConditionalGeneration.from_pretrained(
    model_4b_name,
    device_map="auto",
    torch_dtype=torch.bfloat16
).eval()
processor_4b = AutoProcessor.from_pretrained(model_4b_name)
# I will add timestamp later
def extract_video_frames(video_path, num_frames=8):
    cap = cv2.VideoCapture(video_path)
    frames = []
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    step = max(total_frames // num_frames, 1)
    
    for i in range(num_frames):
        cap.set(cv2.CAP_PROP_POS_FRAMES, i * step)
        ret, frame = cap.read()
        if ret:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(Image.fromarray(frame))
    cap.release()
    return frames

def format_message(content, files):
    
    message_content = []

    if content:
        parts = content.split('<image>')
        for i, part in enumerate(parts):
            if part.strip():
                message_content.append({"type": "text", "text": part.strip()})
            if i < len(parts) - 1 and files:
                img = Image.open(files.pop(0))
                message_content.append({"type": "image", "image": img})
    for file in files:
        file_path = file if isinstance(file, str) else file.name
        if Path(file_path).suffix.lower() in ['.jpg', '.jpeg', '.png']:
            img = Image.open(file_path)
            message_content.append({"type": "image", "image": img})
        elif Path(file_path).suffix.lower() in ['.mp4', '.mov']:
            frames = extract_video_frames(file_path)
            for frame in frames:
                message_content.append({"type": "image", "image": frame})
    return message_content

def format_conversation_history(chat_history):
    messages = []
    current_user_content = []
    for item in chat_history:
        role = item["role"]
        content = item["content"]
        if role == "user":
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            elif isinstance(content, list):
                current_user_content.extend(content)
            else:
                current_user_content.append({"type": "text", "text": str(content)})
        elif role == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": str(content)}]})
    if current_user_content:
        messages.append({"role": "user", "content": current_user_content})
    return messages

@spaces.GPU(duration=120)
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
    if isinstance(input_data, dict) and "text" in input_data:
        text = input_data["text"]
        files = input_data.get("files", [])
    else:
        text = str(input_data)
        files = []

    new_message_content = format_message(text, files)
    new_message = {"role": "user", "content": new_message_content}
    system_message = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}] if system_prompt else []
    processed_history = format_conversation_history(chat_history)
    messages = system_message + processed_history
    if messages and messages[-1]["role"] == "user":
        messages[-1]["content"].extend(new_message["content"])
    else:
        messages.append(new_message)
    model = model_4b
    processor = processor_4b
    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_tensors="pt",
        return_dict=True
    ).to(model.device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty
    )
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

chat_interface = gr.ChatInterface(
    fn=generate_response,
    chatbot=gr.Chatbot(rtl=True, show_copy_button=True,type="messages"),    
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=100, maximum=2000, step=1, value=512),
        gr.Textbox(
            label="System Prompt",
            value="讗转讛 诪砖讜专专 讬砖专讗诇讬, 讻讜转讘 砖讬专讬诐 讘注讘专讬转",
            lines=4,
            placeholder="砖谞讛 讗转 讛讛讙讚专讜转 砖诇 讛诪讜讚诇",
            text_align = 'right', rtl = True
        ),
        gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.92),
        gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=70),
        gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1),
    ],
    examples=[
        [{"text": "讻转讜讘 诇讬 讘讘拽砖讛 砖讬专 讛诪转讗专 讗转 讛转诪讜谞讛", "files": ["examples/image1.jpg"]}],
        [{"text": "转驻讜讞 讗讚诪讛 注诐 讞专讚讛 讞讘专转讬转"}]
    ],
    textbox=gr.MultimodalTextbox(
        rtl=True,
        label="拽诇讟",
        file_types=["image", "video"],
        file_count="multiple",
        placeholder="讘拽砖讜 砖讬专 讜/讗讜 讛注诇讜 转诪讜谞讛",        
    ),
    cache_examples=False,
    type="messages",
    fill_height=True,
    stop_btn="讛驻住拽",
    css_paths=["style.css"],
    multimodal=True,
    title=TITLE,
    description=DESCRIPTION,
    theme=gr.themes.Soft(),
)

if __name__ == "__main__":
     chat_interface.queue(max_size=20).launch()