File size: 14,380 Bytes
f92da22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
#!/usr/bin/env python3
"""
LangChain Medical Agents Architecture - Refactored
A multi-agent system for processing medical transcriptions and documents.
"""
import os
import re
from datetime import datetime
from dotenv import load_dotenv
from langchain_openai import AzureChatOpenAI
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
# Import modular components
from models import TemplateAnalysis, MedicalTranscription, SectionContent, InsertSectionsInput
from sftp_agent import create_sftp_downloader_agent, download_model_from_sftp
from template_analyzer import create_template_analyzer_agent, analyze_word_template
from transcription_processor import (
create_transcription_corrector_chain,
create_medical_analyzer_chain,
create_title_generator_chain,
load_transcription_with_user_id
)
from section_generator import create_dynamic_section_prompt, fix_section_names
from document_assembler import create_document_assembler_agent
from document_validator import validate_generated_document, create_validation_chain
# Load environment variables
load_dotenv()
# Initialize LLM with Azure OpenAI
llm = AzureChatOpenAI(
azure_deployment="gtp-4o-eastus2",
openai_api_version="2024-02-15-preview",
azure_endpoint="https://voxist-gpt-eastus2.openai.azure.com/",
api_key="98db8190a2ff438b904c7e9862a13210",
temperature=0.1
)
class MedicalDocumentOrchestrator:
"""Main orchestrator that coordinates all agents."""
def __init__(self, template_path: str = None, transcription_path: str = None, transcriptions_dir: str = "transcriptions"):
self.template_path = template_path
self.transcription_path = transcription_path
self.transcriptions_dir = transcriptions_dir
self.template_analysis = None
self.corrected_transcription = None
self.medical_data = None
self.generated_sections = None
self.generated_title = None
self.downloaded_models = None
def run_full_pipeline(self, output_path: str = None) -> str:
"""Run the complete medical document processing pipeline."""
print("π Starting LangChain Medical Document Pipeline...")
# Step 0: Download only the model corresponding to the transcription
print("\nπ₯ Step 0: Downloading model from SFTP for the selected transcription...")
try:
transcription_filename = os.path.basename(self.transcription_path)
match = re.search(r'transcriptions_(.+)\.rtf_',
transcription_filename)
if match:
model_id = match.group(1)
model_filename = f"{model_id}.rtf"
local_filename = f"{model_id}.doc"
local_template_path = os.path.join("models", local_filename)
print(f"π Model identifier for this transcription: {model_id}")
# Download only the required model via a simple agent
simple_sftp_agent = create_openai_tools_agent(
llm=llm,
tools=[download_model_from_sftp],
prompt=ChatPromptTemplate.from_messages([
("system", "You are an SFTP downloader. Download the specified model file."),
("human", "Download the model file: {model_filename}"),
MessagesPlaceholder("agent_scratchpad")
])
)
simple_sftp_executor = AgentExecutor(
agent=simple_sftp_agent,
tools=[download_model_from_sftp],
verbose=True
)
result = simple_sftp_executor.invoke({
"model_filename": model_filename
})
print(
f"β
Model downloaded and available as: {local_template_path}")
self.template_path = local_template_path
self.downloaded_models = [{
'model_id': model_id,
'model_filename': model_filename,
'local_filename': local_filename,
'local_path': local_template_path,
'status': 'success'
}]
else:
raise ValueError(
"Unable to extract the model identifier from the transcription filename.")
except Exception as e:
print(f"β Error during SFTP download step: {str(e)}")
if self.template_path:
print("β οΈ Continuing with pipeline using the provided template_path...")
else:
print(
"β No template path provided and SFTP download failed. Cannot continue.")
raise Exception(
"Cannot continue without a template. SFTP download failed and no template path was provided.")
self.downloaded_models = []
# Step 1: Analyze template
print("\nπ Step 1: Analyzing template...")
if not self.template_path:
raise ValueError("No template path available for analysis")
self.template_analysis = analyze_word_template(self.template_path)
print(
f"β
Template analyzed: {len(self.template_analysis.get('sections', []))} sections found")
# Step 2: Load and correct transcription
print("\nβοΈ Step 2: Correcting transcription...")
raw_transcription, user_id = load_transcription_with_user_id(
self.transcription_path)
transcription_corrector_chain = create_transcription_corrector_chain(
llm)
self.corrected_transcription = transcription_corrector_chain.invoke({
"transcription": raw_transcription
}).content
# β Ajoute ces deux lignes juste aprΓ¨s
print("\n===== Transcription après correction =====")
print(self.corrected_transcription)
print("β
Transcription corrected")
print("β
Transcription corrected")
# Step 3: Analyze medical data
print("\n㪠Step 3: Analyzing medical data...")
medical_analyzer_chain = create_medical_analyzer_chain(llm)
self.medical_data = medical_analyzer_chain.invoke({
"corrected_transcription": self.corrected_transcription
}).content
print("β
Medical data analyzed")
# Step 4: Generate title
print("\nπ Step 4: Generating title...")
title_generator_chain = create_title_generator_chain(llm)
self.generated_title = title_generator_chain.invoke({
"medical_data": self.medical_data
}).content
print(f"β
Title generated: {self.generated_title}")
# Step 5: Generate sections
print("\nπ Step 5: Generating sections...")
# Extract sections from template analysis
template_sections = []
# Debug: see exactly what template_analysis contains
print("\n--- DEBUG: Type and content of template_analysis ---")
print(f"Type: {type(self.template_analysis)}")
print(f"Content: {self.template_analysis}")
if hasattr(self.template_analysis, '__dict__'):
print(f"Attributes: {self.template_analysis.__dict__}")
print("--- END DEBUG ---\n")
# Always retrieve the sections list if possible
try:
if isinstance(self.template_analysis, dict) and 'sections' in self.template_analysis:
template_sections = [section['text']
for section in self.template_analysis['sections']]
elif hasattr(self.template_analysis, 'get') and 'sections' in self.template_analysis:
template_sections = [section['text']
for section in self.template_analysis['sections']]
elif hasattr(self.template_analysis, 'output') and isinstance(self.template_analysis.output, dict) and 'sections' in self.template_analysis.output:
template_sections = [section['text']
for section in self.template_analysis.output['sections']]
except Exception as e:
print('Error extracting sections:', e)
# Fallback: try to extract from the agent response text
if not template_sections:
response_text = str(self.template_analysis)
if 'Technique' in response_text and 'RΓ©sultat' in response_text and 'Conclusion' in response_text:
template_sections = ['Technique\xa0:',
'RΓ©sultat\xa0:', 'Conclusion\xa0:']
elif 'CONCLUSION' in response_text:
template_sections = ['CONCLUSION\xa0:']
# Create dynamic prompt based on template sections
dynamic_section_prompt = create_dynamic_section_prompt(
template_sections)
section_generator_chain = dynamic_section_prompt | llm
generated_content = section_generator_chain.invoke({
"template_sections": template_sections,
"medical_data": self.medical_data,
"corrected_transcription": self.corrected_transcription
}).content
# Post-process to ensure exact section names are used
self.generated_sections = fix_section_names(
generated_content, template_sections)
print("\n--- DEBUG: Generated sections ---")
print(self.generated_sections)
print("--- END DEBUG ---\n")
print("\n--- DEBUG: Template sections ---")
print(template_sections)
print("--- END DEBUG ---\n")
print("\n--- DEBUG: Generated title ---")
print(self.generated_title)
print("--- END DEBUG ---\n")
# Step 6: Assemble document
print("\nπ Step 6: Assembling document...")
if output_path is None:
# Generate output filename based on user_id
# Replace the last extension with .docx
if '.' in user_id:
# Split by dots and replace the last part with docx
parts = user_id.split('.')
parts[-1] = 'docx'
output_filename = '.'.join(parts)
else:
# If no extension, just add .docx
output_filename = f"{user_id}.docx"
output_path = output_filename
# Use the agent for assembly
document_assembler_executor = create_document_assembler_agent(llm)
result = document_assembler_executor.invoke({
"template_path": self.template_path,
"sections_text": self.generated_sections,
"title": self.generated_title,
"output_path": output_path
})
print(f"π Pipeline completed! Document saved: {output_path}")
# Step 7: Validate document
print("\nπ Step 7: Validating document...")
validation_result = validate_generated_document(
self.template_path, self.transcription_path, output_path)
# Display validation results
print("\n" + "=" * 60)
print("π VALIDATION RESULTS")
print("=" * 60)
# Overall score
score = validation_result["overall_score"]
score_emoji = "π’" if score >= 0.8 else "π‘" if score >= 0.6 else "π΄"
print(f"{score_emoji} Overall Score: {score:.1%}")
# Structure validation
structure_valid = validation_result["structure_valid"]
structure_emoji = "β
" if structure_valid else "β"
print(f"{structure_emoji} Structure Valid: {structure_valid}")
if not structure_valid:
missing = validation_result["missing_sections"]
print(f" Missing sections: {', '.join(missing)}")
# Entities validation
entities_coverage = validation_result["entities_coverage"]
entities_emoji = "β
" if entities_coverage >= 80 else "β οΈ"
print(f"{entities_emoji} Medical Entities Coverage: {entities_coverage:.1f}%")
if entities_coverage < 80:
missing_entities = validation_result["missing_entities"][:5]
print(f" Missing entities: {', '.join(missing_entities)}")
# Generate AI validation report
print("\nπ AI Validation Report:")
print("-" * 40)
# Extract content for AI validation
from docx import Document
doc = Document(output_path)
generated_content = []
for paragraph in doc.paragraphs:
text = paragraph.text.strip()
if text and not text.startswith("Date:") and not text.startswith("Heure:"):
generated_content.append(text)
generated_text = "\n".join(generated_content)
validation_chain = create_validation_chain(llm)
ai_validation = validation_chain.invoke({
"transcription": self.corrected_transcription,
"generated_content": generated_text,
"structure_valid": structure_valid,
"entities_coverage": entities_coverage,
"missing_sections": validation_result["missing_sections"],
"missing_entities": validation_result["missing_entities"]
})
print(ai_validation.content)
print("\n" + "=" * 60)
print("β
Document validated")
# Remove the local model after validation
try:
if self.template_path and os.path.exists(self.template_path):
os.remove(self.template_path)
print(f"ποΈ Deleted local model file: {self.template_path}")
except Exception as e:
print(f"β οΈ Could not delete local model file: {e}")
return output_path
def main():
"""Main function to run the LangChain medical document pipeline."""
print("π₯ LangChain Medical Document Agents - Refactored")
print("=" * 60)
# Initialize orchestrator
orchestrator = MedicalDocumentOrchestrator(
template_path="default.528.251014072.doc",
transcription_path="transciption.txt"
)
# Run the complete pipeline
output_file = orchestrator.run_full_pipeline()
print(f"\nβ
Final document: {output_file}")
print("π LangChain pipeline completed successfully!")
if __name__ == "__main__":
main()
|