File size: 16,838 Bytes
f92da22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
#!/usr/bin/env python3
"""
Improved Template Analyzer - Enhanced section detection
Fixes issues with section detection and provides better analysis
"""
import os
import re
from typing import Dict, Any, List, Tuple
from docx import Document
import json
from datetime import datetime
from langchain.tools import tool
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
@tool
def analyze_word_template_tool(template_path: str) -> Dict[str, Any]:
"""Analyze a Word document template to extract structure and sections."""
if not os.path.exists(template_path):
raise FileNotFoundError(f"Template file not found: {template_path}")
doc = Document(template_path)
analysis = {
'sections': [],
'formatting': {},
'document_info': {}
}
# Improved section detection regex - includes all common medical sections
section_patterns = [
r'\b(clinique|examen|observation)\b',
r'\b(technique|matériel|méthode|procédure)\b',
r'\b(résultat|resultat|resultats|résultats)\b',
r'\b(conclusion|diagnostic|impression)\b',
r'\b(échographie|echographie|imagerie)\b',
r'\b(recommandation|traitement|suivi)\b',
r'\b(analyse|commentaire|discussion)\b',
r'\b(antécédents|histoire|anamnèse)\b',
r'\b(indication|objectif)\b',
r'\b(biologie|laboratoire)\b'
]
combined_pattern = '|'.join(section_patterns)
# Analyze paragraphs and sections
for i, paragraph in enumerate(doc.paragraphs):
text = paragraph.text.strip()
if text:
# Check if paragraph contains section keywords
if re.search(combined_pattern, text, re.IGNORECASE):
analysis['sections'].append({
'text': text,
'index': i,
'style': paragraph.style.name if paragraph.style else 'Normal'
})
# Analyze formatting
if paragraph.runs:
run = paragraph.runs[0]
analysis['formatting'][i] = {
'bold': run.bold,
'italic': run.italic,
'font_name': run.font.name,
'font_size': run.font.size.pt if run.font.size else None,
'alignment': paragraph.alignment
}
# Analyze document properties
if doc.core_properties:
analysis['document_info'] = {
'title': doc.core_properties.title or 'Word Document',
'author': doc.core_properties.author or '',
'subject': doc.core_properties.subject or ''
}
return analysis
class ImprovedTemplateAnalyzer:
"""Enhanced template analyzer with better section detection."""
def __init__(self):
"""Initialize the template analyzer."""
print("🔍 Improved Template Analyzer initialized")
# Define comprehensive section patterns
self.section_patterns = {
'clinique': r'\b(clinique|examen|observation|examen_clinique)\b',
'technique': r'\b(technique|matériel|méthode|procédure|protocole)\b',
'resultats': r'\b(résultat|resultat|resultats|résultats|findings)\b',
'conclusion': r'\b(conclusion|diagnostic|impression|synthèse)\b',
'imagerie': r'\b(échographie|echographie|imagerie|radiologie)\b',
'recommandations': r'\b(recommandation|traitement|suivi|conduite)\b',
'analyse': r'\b(analyse|commentaire|discussion|interprétation)\b',
'antecedents': r'\b(antécédents|histoire|anamnèse|contexte)\b',
'indication': r'\b(indication|objectif|but|demande)\b',
'biologie': r'\b(biologie|laboratoire|bilan|analyses)\b'
}
def analyze_word_template(self, template_path: str) -> Dict[str, Any]:
"""Analyze a Word document template to extract structure and sections."""
if not os.path.exists(template_path):
raise FileNotFoundError(f"Template file not found: {template_path}")
print(f"📄 Analyzing template: {template_path}")
doc = Document(template_path)
analysis = {
'sections': [],
'formatting': {},
'document_info': {},
'all_text': [],
'structure': {},
'detected_section_types': []
}
# Analyze paragraphs and sections
for i, paragraph in enumerate(doc.paragraphs):
text = paragraph.text.strip()
# Store all text for reference
if text:
analysis['all_text'].append({
'index': i,
'text': text,
'length': len(text)
})
# Check for sections using improved detection
section_type = self._detect_section_type(text)
if section_type:
analysis['sections'].append({
'text': text,
'index': i,
'style': paragraph.style.name if paragraph.style else 'Normal',
'section_type': section_type,
'is_header': self._is_likely_header(text)
})
if section_type not in analysis['detected_section_types']:
analysis['detected_section_types'].append(section_type)
# Analyze formatting
if paragraph.runs:
run = paragraph.runs[0]
analysis['formatting'][i] = {
'bold': run.bold,
'italic': run.italic,
'font_name': run.font.name,
'font_size': run.font.size.pt if run.font.size else None,
'alignment': str(paragraph.alignment) if paragraph.alignment else None
}
# Analyze document properties
if doc.core_properties:
analysis['document_info'] = {
'title': doc.core_properties.title or 'Word Document',
'author': doc.core_properties.author or '',
'subject': doc.core_properties.subject or '',
'created': doc.core_properties.created.isoformat() if doc.core_properties.created else None,
'modified': doc.core_properties.modified.isoformat() if doc.core_properties.modified else None
}
# Extract document structure
analysis['structure'] = self._extract_structure(analysis['sections'])
return analysis
def _detect_section_type(self, text: str) -> str:
"""Detect the type of section based on improved pattern matching."""
text_lower = text.lower()
# Check each pattern
for section_type, pattern in self.section_patterns.items():
if re.search(pattern, text_lower):
return section_type
# Additional check for common section formats
if ':' in text and len(text.split()) <= 3:
# Likely a section header
first_word = text.split(':')[0].strip().lower()
if first_word in ['clinique', 'technique', 'resultats', 'résultats', 'conclusion']:
return first_word if first_word != 'résultats' else 'resultats'
return None
def _is_likely_header(self, text: str) -> bool:
"""Determine if text is likely a section header."""
# Headers are usually short, may end with ':', and often bold
conditions = [
len(text) < 100, # Short text
text.endswith(':'), # Ends with colon
text.isupper(), # All uppercase
len(text.split()) <= 3 # Few words
]
return any(conditions)
def _extract_structure(self, sections: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Extract the document structure from sections."""
structure = {
'detected_sections': [],
'section_types': [],
'total_sections': len(sections)
}
for section in sections:
structure['detected_sections'].append({
'text': section['text'],
'type': section.get('section_type', 'unknown'),
'index': section['index']
})
section_type = section.get('section_type', 'unknown')
if section_type not in structure['section_types']:
structure['section_types'].append(section_type)
return structure
def save_analysis(self, analysis: Dict[str, Any], output_path: str = None):
"""Save analysis results to JSON file."""
if not output_path:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_path = f"improved_template_analysis_{timestamp}.json"
try:
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(analysis, f, ensure_ascii=False, indent=2)
print(f"💾 Analysis saved to: {output_path}")
return output_path
except Exception as e:
print(f"❌ Error saving analysis: {e}")
return None
def display_analysis_summary(self, analysis: Dict[str, Any]):
"""Display a summary of the template analysis."""
print("\n📊 IMPROVED TEMPLATE ANALYSIS SUMMARY")
print("=" * 60)
print(f"Total paragraphs: {len(analysis['all_text'])}")
print(f"Detected sections: {len(analysis['sections'])}")
if analysis['detected_section_types']:
print(f"Section types found: {', '.join(analysis['detected_section_types'])}")
print(f"Document title: {analysis['document_info'].get('title', 'N/A')}")
print(f"Document author: {analysis['document_info'].get('author', 'N/A')}")
print("\n🔍 DETECTED SECTIONS:")
for i, section in enumerate(analysis['structure']['detected_sections']):
print(f" {i+1}. [{section['type']}] {section['text']}")
print(f"\n📄 ALL PARAGRAPHS:")
for i, text_item in enumerate(analysis['all_text']):
print(f" {i+1}. {text_item['text']}")
def test_with_sample_template(self, template_path: str):
"""Test the analyzer with a sample template."""
print(f"🚀 Testing Improved Template Analyzer with: {template_path}")
print("=" * 60)
try:
# Analyze the template
analysis = self.analyze_word_template(template_path)
# Display summary
self.display_analysis_summary(analysis)
# Save analysis
output_file = self.save_analysis(analysis)
print(f"\n✅ Improved analysis completed successfully!")
print(f"📁 Results saved to: {output_file}")
return analysis
except Exception as e:
print(f"❌ Error during analysis: {e}")
import traceback
traceback.print_exc()
return None
def create_template_analyzer_agent(self, llm):
"""Create the improved template analyzer agent."""
template_analyzer_prompt = ChatPromptTemplate.from_messages([
("system", """You are an enhanced medical document template analyzer.
Analyze the provided Word template and extract its structure, sections, and formatting.
Pay special attention to detecting ALL sections including: CLINIQUE, TECHNIQUE, RESULTATS, and CONCLUSION.
Provide a detailed analysis that can be used by other agents."""),
("human",
"Analyze the template at {template_path} and provide a comprehensive analysis. Make sure to detect all sections including RESULTATS."),
MessagesPlaceholder("agent_scratchpad")
])
template_analyzer_agent = create_openai_tools_agent(
llm=llm,
tools=[analyze_word_template_tool],
prompt=template_analyzer_prompt
)
template_analyzer_executor = AgentExecutor(
agent=template_analyzer_agent,
tools=[analyze_word_template_tool],
verbose=True
)
return template_analyzer_executor
def test_with_agent(self, template_path: str):
"""Test the template analyzer using the enhanced LangChain agent."""
print(f"🤖 Testing Improved Template Analyzer AGENT with: {template_path}")
print("=" * 60)
try:
# Initialize OpenAI LLM
api_key = os.getenv('OPENAI_API_KEY')
if not api_key:
print("❌ OpenAI API key not found in environment variables")
return None
llm = ChatOpenAI(
model="gpt-4o-mini",
temperature=0,
api_key=api_key
)
# Create the agent
print("🔧 Creating improved template analyzer agent...")
agent_executor = self.create_template_analyzer_agent(llm)
# Run the agent
print("🚀 Running enhanced agent analysis...")
result = agent_executor.invoke({
"template_path": template_path
})
print("✅ Enhanced agent analysis completed!")
print("\n📋 AGENT OUTPUT:")
print("=" * 50)
print(result['output'])
# Save agent result
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
agent_output_file = f"improved_agent_analysis_{timestamp}.json"
with open(agent_output_file, 'w', encoding='utf-8') as f:
json.dump(result, f, ensure_ascii=False, indent=2)
print(f"\n💾 Enhanced agent result saved to: {agent_output_file}")
return result
except Exception as e:
print(f"❌ Error during enhanced agent analysis: {e}")
import traceback
traceback.print_exc()
return None
def main():
print("🏥 Improved Template Analyzer - Enhanced Section Detection")
print("=" * 60)
# Initialize analyzer
analyzer = ImprovedTemplateAnalyzer()
# Test with sample path or interactive mode
sample_path = "sample.docx"
"""
if os.path.exists(sample_path):
print(f"📄 Found sample file: {sample_path}")
print("🔬 Running enhanced analysis...")
# Test both methods
print("\n1️⃣ Testing improved direct analysis...")
direct_result = analyzer.test_with_sample_template(sample_path)
print("\n" + "="*60)
print("2️⃣ Testing improved agent analysis...")
agent_result = analyzer.test_with_agent(sample_path)
if direct_result and agent_result:
print(f"\n🎉 Both enhanced analyses completed successfully!")
print(f"📊 Direct analysis found {len(direct_result['sections'])} sections")
print(f"📊 Agent analysis tool was executed successfully")
"""
if os.path.exists(sample_path):
print(f"📄 Found sample file: {sample_path}")
print("🤖 Running enhanced **agent** analysis with GPT...")
# Désormais on lance uniquement l’agent LLM
agent_result = analyzer.test_with_agent(sample_path)
if agent_result:
print(f"\n🎉 Enhanced agent analysis completed successfully!")
# Affiche par exemple le résumé des sections détectées
#sec = agent_result.get('output', {}).get('structure', {}).get('detected_sections', [])
#print(f"📊 Sections détectées via GPT : {len(sec)}")
print("\n=== AGENT RAW OUTPUT ===\n", agent_result)
else:
print("❌ sample.docx not found. Please provide the correct path.")
template_path = input("Enter the path to your Word template file: ").strip()
if template_path and os.path.exists(template_path):
analyzer.test_with_sample_template(template_path)
else:
print("❌ Invalid file path provided")
if __name__ == "__main__":
main() |