File size: 7,509 Bytes
f92da22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python3
"""
SFTP Model Downloader Agent
Handles downloading model files from SFTP server
"""

import os
import re
import glob
import pysftp
from typing import List, Dict
from langchain.tools import tool
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents import AgentExecutor, create_openai_tools_agent


@tool
def scan_transcription_files(transcriptions_dir: str = "transcriptions") -> List[Dict[str, str]]:
    """Scan the transcriptions directory and extract model identifiers from filenames."""
    if not os.path.exists(transcriptions_dir):
        raise FileNotFoundError(
            f"Transcriptions directory not found: {transcriptions_dir}")

    transcription_files = glob.glob(os.path.join(transcriptions_dir, "*.json"))
    model_identifiers = []

    for file_path in transcription_files:
        filename = os.path.basename(file_path)
        # Extract model identifier from filename pattern: transcriptions_default.99.019111585.rtf_...
        match = re.search(r'transcriptions_(.+)\.rtf_', filename)
        if match:
            model_id = match.group(1)
            model_identifiers.append({
                'model_id': model_id,
                'filename': filename,
                'file_path': file_path,
                # Keep .rtf for SFTP download
                'model_filename': f"{model_id}.rtf",
                # Use .doc for local storage
                'local_filename': f"{model_id}.doc"
            })

    return model_identifiers


@tool
def download_model_from_sftp(model_filename: str, local_download_dir: str = "models", force_download: bool = False) -> str:
    """Download a specific model file from SFTP server and convert extension from .rtf to .doc. If force_download is True, always re-download."""
    # Import configuration
    try:
        from sftp_config import get_sftp_config
        sftp_config = get_sftp_config()
    except ImportError:
        # Fallback to environment variables if config file not available
        sftp_config = {
            'host': os.getenv('SFTP_HOST', 'localhost'),
            'port': int(os.getenv('SFTP_PORT', '22')),
            'username': os.getenv('SFTP_USERNAME', 'user'),
            'password': os.getenv('SFTP_PASSWORD', 'password'),
            'remote_path': os.getenv('SFTP_REMOTE_PATH', '/models/')
        }

    # Create local directory if it doesn't exist
    os.makedirs(local_download_dir, exist_ok=True)

    # Convert filename from .rtf to .doc
    doc_filename = model_filename.replace('.rtf', '.doc')
    local_file_path = os.path.join(local_download_dir, doc_filename)

    # If force_download is False and file exists, skip download
    if not force_download and os.path.exists(local_file_path):
        print(f"ℹ️ Model already exists locally: {local_file_path}")
        return local_file_path

    try:
        # Connect to SFTP server
        cnopts = pysftp.CnOpts()
        cnopts.hostkeys = None  # Disable host key checking for development

        print(
            f"πŸ”Œ Connecting to SFTP server: {sftp_config['host']}:{sftp_config['port']}")

        with pysftp.Connection(
            host=sftp_config['host'],
            port=sftp_config['port'],
            username=sftp_config['username'],
            password=sftp_config['password'],
            cnopts=cnopts
        ) as sftp:
            remote_file_path = os.path.join(
                sftp_config['remote_path'], model_filename)

            # Check if file exists on server
            if not sftp.exists(remote_file_path):
                raise FileNotFoundError(
                    f"Model file not found on SFTP server: {remote_file_path}")

            # Get file size for progress tracking
            file_size = sftp.stat(remote_file_path).st_size
            print(
                f"πŸ“ Found file on server: {remote_file_path} ({file_size} bytes)")

            # Download the file with original .rtf extension first
            temp_rtf_path = os.path.join(local_download_dir, model_filename)
            sftp.get(remote_file_path, temp_rtf_path)
            print(f"πŸ“₯ Downloaded model: {model_filename}")

            # Rename file from .rtf to .doc
            if os.path.exists(local_file_path):
                os.remove(local_file_path)
            os.rename(temp_rtf_path, local_file_path)
            print(f"βœ… Converted extension: {model_filename} -> {doc_filename}")

        return local_file_path

    except pysftp.AuthenticationException:
        error_msg = f"Authentication failed for SFTP server {sftp_config['host']}"
        print(f"❌ {error_msg}")
        raise Exception(error_msg)
    except pysftp.ConnectionException as e:
        error_msg = f"Connection failed to SFTP server {sftp_config['host']}: {str(e)}"
        print(f"❌ {error_msg}")
        raise Exception(error_msg)
    except FileNotFoundError as e:
        error_msg = str(e)
        print(f"❌ {error_msg}")
        raise
    except Exception as e:
        error_msg = f"Error downloading model {model_filename}: {str(e)}"
        print(f"❌ {error_msg}")
        raise Exception(error_msg)


@tool
def batch_download_models(model_identifiers: List[Dict[str, str]], local_download_dir: str = "models") -> List[str]:
    """Download multiple model files from SFTP server in batch."""
    downloaded_files = []

    for model_info in model_identifiers:
        model_filename = model_info['model_filename']  # .rtf file for SFTP
        local_filename = model_info.get('local_filename', model_filename.replace(
            '.rtf', '.doc'))  # .doc file for local

        try:
            local_path = download_model_from_sftp(
                model_filename, local_download_dir)
            downloaded_files.append({
                'model_id': model_info['model_id'],
                'local_path': local_path,
                'local_filename': local_filename,
                'status': 'success'
            })
        except Exception as e:
            downloaded_files.append({
                'model_id': model_info['model_id'],
                'local_path': None,
                'local_filename': local_filename,
                'status': 'error',
                'error': str(e)
            })

    return downloaded_files


def create_sftp_downloader_agent(llm):
    """Create the SFTP downloader agent."""
    sftp_downloader_prompt = ChatPromptTemplate.from_messages([
        ("system", """You are an SFTP model downloader agent. Your task is to:
        1. Scan the transcriptions directory to identify which models are needed
        2. Download the corresponding model files from the SFTP server
        3. Return the list of successfully downloaded models
        
        You should handle errors gracefully and provide detailed feedback about the download process."""),
        ("human",
         "Analyze the transcriptions in {transcriptions_dir} and download the corresponding models from SFTP."),
        MessagesPlaceholder("agent_scratchpad")
    ])

    sftp_downloader_agent = create_openai_tools_agent(
        llm=llm,
        tools=[scan_transcription_files,
               download_model_from_sftp, batch_download_models],
        prompt=sftp_downloader_prompt
    )

    sftp_downloader_executor = AgentExecutor(
        agent=sftp_downloader_agent,
        tools=[scan_transcription_files,
               download_model_from_sftp, batch_download_models],
        verbose=True
    )

    return sftp_downloader_executor