File size: 26,607 Bytes
f92da22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
import os
import re
import json
import numpy as np
from typing import List, Dict, Any, Optional, Tuple, Union
from dataclasses import dataclass
from pathlib import Path
# Core libraries
import torch
from transformers import (
AutoTokenizer, AutoModel, AutoModelForTokenClassification,
TrainingArguments, Trainer, pipeline
)
from torch.utils.data import Dataset
import torch.nn.functional as F
# Vector database
import chromadb
from chromadb.config import Settings
# Utilities
import logging
from tqdm import tqdm
import pandas as pd
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class MedicalEntity:
"""Structure pour les entités médicales extraites par NER"""
exam_types: List[Tuple[str, float]] # (entity, confidence)
specialties: List[Tuple[str, float]]
anatomical_regions: List[Tuple[str, float]]
pathologies: List[Tuple[str, float]]
medical_procedures: List[Tuple[str, float]]
measurements: List[Tuple[str, float]]
medications: List[Tuple[str, float]]
symptoms: List[Tuple[str, float]]
class AdvancedMedicalNER:
"""NER médical avancé basé sur CamemBERT-Bio fine-tuné"""
def __init__(self, model_name: str = "auto", cache_dir: str = "./models_cache"):
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
# Auto-détection du meilleur modèle NER médical disponible
self.model_name = self._select_best_model(model_name)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Chargement du modèle NER
self._load_ner_model()
# Labels BIO pour entités médicales
self.entity_labels = [
"O", # Outside
"B-EXAM", "I-EXAM", # Types d'examens
"B-SPECIALTY", "I-SPECIALTY", # Spécialités médicales
"B-ANATOMY", "I-ANATOMY", # Régions anatomiques
"B-PATHOLOGY", "I-PATHOLOGY", # Pathologies
"B-PROCEDURE", "I-PROCEDURE", # Procédures médicales
"B-MEASURE", "I-MEASURE", # Mesures/valeurs
"B-MEDICATION", "I-MEDICATION", # Médicaments
"B-SYMPTOM", "I-SYMPTOM" # Symptômes
]
self.id2label = {i: label for i, label in enumerate(self.entity_labels)}
self.label2id = {label: i for i, label in enumerate(self.entity_labels)}
def _select_best_model(self, model_name: str) -> str:
"""Sélection automatique du meilleur modèle NER médical"""
if model_name != "auto":
return model_name
# Liste des modèles par ordre de préférence
preferred_models = [
"almanach/camembert-bio-base", # CamemBERT Bio français
"Dr-BERT/DrBERT-7GB", # DrBERT spécialisé
"emilyalsentzer/Bio_ClinicalBERT", # Bio Clinical BERT
"microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
"dmis-lab/biobert-base-cased-v1.2", # BioBERT
"camembert-base" # Fallback CamemBERT standard
]
for model in preferred_models:
try:
# Test de disponibilité
AutoTokenizer.from_pretrained(model, cache_dir=self.cache_dir)
logger.info(f"Modèle sélectionné: {model}")
return model
except:
continue
# Fallback ultime
logger.warning("Utilisation du modèle de base camembert-base")
return "camembert-base"
def _load_ner_model(self):
"""Charge ou crée le modèle NER fine-tuné"""
fine_tuned_path = self.cache_dir / "medical_ner_model"
if fine_tuned_path.exists():
logger.info("Chargement du modèle NER fine-tuné existant")
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_path)
self.ner_model = AutoModelForTokenClassification.from_pretrained(fine_tuned_path)
else:
logger.info("Création d'un nouveau modèle NER médical")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, cache_dir=self.cache_dir)
# Modèle pour classification de tokens (NER)
self.ner_model = AutoModelForTokenClassification.from_pretrained(
self.model_name,
num_labels=len(self.entity_labels),
id2label=self.id2label,
label2id=self.label2id,
cache_dir=self.cache_dir
)
self.ner_model.to(self.device)
# Pipeline NER
self.ner_pipeline = pipeline(
"token-classification",
model=self.ner_model,
tokenizer=self.tokenizer,
device=0 if torch.cuda.is_available() else -1,
aggregation_strategy="simple"
)
def extract_entities(self, text: str) -> MedicalEntity:
"""Extraction d'entités avec le modèle NER fine-tuné"""
# Prédiction NER
try:
ner_results = self.ner_pipeline(text)
except Exception as e:
logger.error(f"Erreur NER: {e}")
return MedicalEntity([], [], [], [], [], [], [], [])
# Groupement des entités par type
entities = {
"EXAM": [],
"SPECIALTY": [],
"ANATOMY": [],
"PATHOLOGY": [],
"PROCEDURE": [],
"MEASURE": [],
"MEDICATION": [],
"SYMPTOM": []
}
for result in ner_results:
entity_type = result['entity_group'].replace('B-', '').replace('I-', '')
entity_text = result['word']
confidence = result['score']
if entity_type in entities and confidence > 0.7: # Seuil de confiance
entities[entity_type].append((entity_text, confidence))
return MedicalEntity(
exam_types=entities["EXAM"],
specialties=entities["SPECIALTY"],
anatomical_regions=entities["ANATOMY"],
pathologies=entities["PATHOLOGY"],
medical_procedures=entities["PROCEDURE"],
measurements=entities["MEASURE"],
medications=entities["MEDICATION"],
symptoms=entities["SYMPTOM"]
)
def fine_tune_on_templates(self, templates_data: List[Dict],
output_dir: str = None,
epochs: int = 3):
"""Fine-tuning du modèle NER sur des templates médicaux"""
if output_dir is None:
output_dir = self.cache_dir / "medical_ner_model"
logger.info("Début du fine-tuning NER sur templates médicaux")
# Préparation des données d'entraînement
# (Ici, on utiliserait des templates annotés ou de l'auto-annotation)
train_dataset = self._prepare_training_data(templates_data)
# Configuration d'entraînement
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=epochs,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=100,
weight_decay=0.01,
logging_dir=f"{output_dir}/logs",
save_strategy="epoch",
evaluation_strategy="epoch" if train_dataset.get('eval') else "no",
load_best_model_at_end=True,
metric_for_best_model="eval_loss" if train_dataset.get('eval') else None,
)
# Trainer
trainer = Trainer(
model=self.ner_model,
args=training_args,
train_dataset=train_dataset['train'],
eval_dataset=train_dataset.get('eval'),
tokenizer=self.tokenizer,
)
# Entraînement
trainer.train()
# Sauvegarde
trainer.save_model()
self.tokenizer.save_pretrained(output_dir)
logger.info(f"Fine-tuning terminé, modèle sauvé dans {output_dir}")
def _prepare_training_data(self, templates_data: List[Dict]) -> Dict:
"""Prépare les données d'entraînement pour le NER (auto-annotation intelligente)"""
# Cette fonction pourrait utiliser des techniques d'auto-annotation
# ou des datasets médicaux pré-existants pour créer des labels BIO
# Pour l'exemple, retourner un dataset vide
# En production, on utiliserait des techniques d'annotation automatique
# ou des datasets médicaux annotés comme QUAERO, CAS, etc.
class EmptyDataset(Dataset):
def __len__(self):
return 0
def __getitem__(self, idx):
return {}
return {'train': EmptyDataset()}
class AdvancedMedicalEmbedding:
"""Générateur d'embeddings médicaux avancés avec cross-encoder reranking"""
def __init__(self,
base_model: str = "almanach/camembert-bio-base",
cross_encoder_model: str = "auto"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.base_model_name = base_model
# Modèle principal pour embeddings
self._load_base_model()
# Cross-encoder pour reranking
self._load_cross_encoder(cross_encoder_model)
def _load_base_model(self):
"""Charge le modèle de base pour les embeddings"""
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_name)
self.base_model = AutoModel.from_pretrained(self.base_model_name)
self.base_model.to(self.device)
logger.info(f"Modèle de base chargé: {self.base_model_name}")
except Exception as e:
logger.error(f"Erreur chargement modèle de base: {e}")
raise
def _load_cross_encoder(self, model_name: str):
"""Charge le cross-encoder pour reranking"""
if model_name == "auto":
# Sélection automatique du meilleur cross-encoder médical
cross_encoders = [
"microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
"emilyalsentzer/Bio_ClinicalBERT",
self.base_model_name # Fallback
]
for model in cross_encoders:
try:
self.cross_tokenizer = AutoTokenizer.from_pretrained(model)
self.cross_model = AutoModel.from_pretrained(model)
self.cross_model.to(self.device)
logger.info(f"Cross-encoder chargé: {model}")
break
except:
continue
else:
self.cross_tokenizer = AutoTokenizer.from_pretrained(model_name)
self.cross_model = AutoModel.from_pretrained(model_name)
self.cross_model.to(self.device)
def generate_embedding(self, text: str, entities: MedicalEntity = None) -> np.ndarray:
"""Génère un embedding enrichi pour un texte médical"""
# Tokenisation
inputs = self.tokenizer(
text,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
# Génération embedding
with torch.no_grad():
outputs = self.base_model(**inputs)
# Mean pooling
attention_mask = inputs['attention_mask']
token_embeddings = outputs.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
embedding = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Enrichissement avec entités NER
if entities:
embedding = self._enrich_with_ner_entities(embedding, entities)
return embedding.cpu().numpy().flatten().astype(np.float32)
def _enrich_with_ner_entities(self, base_embedding: torch.Tensor, entities: MedicalEntity) -> torch.Tensor:
"""Enrichit l'embedding avec les entités extraites par NER"""
# Concaténer les entités importantes avec leurs scores de confiance
entity_texts = []
confidence_weights = []
for entity_list in [entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies]:
for entity_text, confidence in entity_list:
entity_texts.append(entity_text)
confidence_weights.append(confidence)
if not entity_texts:
return base_embedding
# Génération d'embeddings pour les entités
entity_text_combined = " [SEP] ".join(entity_texts)
entity_inputs = self.tokenizer(
entity_text_combined,
padding=True,
truncation=True,
max_length=256,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
entity_outputs = self.base_model(**entity_inputs)
entity_embedding = torch.mean(entity_outputs.last_hidden_state, dim=1)
# Fusion pondérée par les scores de confiance
avg_confidence = np.mean(confidence_weights) if confidence_weights else 0.5
fusion_weight = min(0.4, avg_confidence) # Max 40% pour les entités
enriched_embedding = (1 - fusion_weight) * base_embedding + fusion_weight * entity_embedding
return enriched_embedding
def cross_encoder_rerank(self,
query: str,
candidates: List[Dict],
top_k: int = 3) -> List[Dict]:
"""Reranking avec cross-encoder pour affiner la sélection"""
if len(candidates) <= top_k:
return candidates
reranked_candidates = []
for candidate in candidates:
# Création de la paire query-candidate
pair_text = f"{query} [SEP] {candidate['document']}"
# Tokenisation
inputs = self.cross_tokenizer(
pair_text,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
# Score de similarité cross-encoder
with torch.no_grad():
outputs = self.cross_model(**inputs)
# Utilisation du [CLS] token pour le score de similarité
cls_embedding = outputs.last_hidden_state[:, 0, :]
similarity_score = torch.sigmoid(torch.mean(cls_embedding)).item()
candidate_copy = candidate.copy()
candidate_copy['cross_encoder_score'] = similarity_score
candidate_copy['final_score'] = (
0.6 * candidate['similarity_score'] +
0.4 * similarity_score
)
reranked_candidates.append(candidate_copy)
# Tri par score final
reranked_candidates.sort(key=lambda x: x['final_score'], reverse=True)
return reranked_candidates[:top_k]
class MedicalTemplateVectorDB:
"""Base de données vectorielle optimisée pour templates médicaux"""
def __init__(self, db_path: str = "./medical_vector_db", collection_name: str = "medical_templates"):
self.db_path = db_path
self.collection_name = collection_name
# ChromaDB avec configuration optimisée
self.client = chromadb.PersistentClient(
path=db_path,
settings=Settings(
anonymized_telemetry=False,
allow_reset=True
)
)
# Collection avec métrique de distance optimisée
try:
self.collection = self.client.get_collection(collection_name)
logger.info(f"Collection '{collection_name}' chargée")
except:
self.collection = self.client.create_collection(
name=collection_name,
metadata={
"hnsw:space": "cosine",
"hnsw:M": 32, # Connectivité du graphe
"hnsw:ef_construction": 200, # Qualité vs vitesse construction
"hnsw:ef_search": 50 # Qualité vs vitesse recherche
}
)
logger.info(f"Collection '{collection_name}' créée avec optimisations HNSW")
def add_template(self,
template_id: str,
template_text: str,
embedding: np.ndarray,
entities: MedicalEntity,
metadata: Dict[str, Any] = None):
"""Ajoute un template avec métadonnées enrichies par NER"""
# Métadonnées automatiques basées sur NER
auto_metadata = {
"exam_types": [entity[0] for entity in entities.exam_types],
"specialties": [entity[0] for entity in entities.specialties],
"anatomical_regions": [entity[0] for entity in entities.anatomical_regions],
"pathologies": [entity[0] for entity in entities.pathologies],
"procedures": [entity[0] for entity in entities.medical_procedures],
"text_length": len(template_text),
"entity_confidence_avg": np.mean([
entity[1] for entity_list in [
entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies
] for entity in entity_list
]) if any([entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies]) else 0.0
}
if metadata:
auto_metadata.update(metadata)
self.collection.add(
embeddings=[embedding.tolist()],
documents=[template_text],
metadatas=[auto_metadata],
ids=[template_id]
)
logger.info(f"Template {template_id} ajouté avec métadonnées NER automatiques")
def advanced_search(self,
query_embedding: np.ndarray,
n_results: int = 10,
entity_filters: Dict[str, List[str]] = None,
confidence_threshold: float = 0.0) -> List[Dict]:
"""Recherche avancée avec filtres basés sur entités NER"""
where_clause = {}
# Filtres basés sur entités NER extraites
if entity_filters:
for entity_type, entity_values in entity_filters.items():
if entity_values:
where_clause[entity_type] = {"$in": entity_values}
# Filtre par confiance moyenne des entités
if confidence_threshold > 0:
where_clause["entity_confidence_avg"] = {"$gte": confidence_threshold}
results = self.collection.query(
query_embeddings=[query_embedding.tolist()],
n_results=n_results,
where=where_clause if where_clause else None,
include=["documents", "metadatas", "distances"]
)
# Formatage des résultats
formatted_results = []
for i in range(len(results['ids'][0])):
formatted_results.append({
'id': results['ids'][0][i],
'document': results['documents'][0][i],
'metadata': results['metadatas'][0][i],
'similarity_score': 1 - results['distances'][0][i],
'distance': results['distances'][0][i]
})
return formatted_results
class AdvancedMedicalTemplateProcessor:
"""Processeur avancé avec NER fine-tuné et reranking cross-encoder"""
def __init__(self,
base_model: str = "almanach/camembert-bio-base",
db_path: str = "./advanced_medical_vector_db"):
self.ner_extractor = AdvancedMedicalNER()
self.embedding_generator = AdvancedMedicalEmbedding(base_model)
self.vector_db = MedicalTemplateVectorDB(db_path)
logger.info("Processeur médical avancé initialisé avec NER fine-tuné et cross-encoder reranking")
def process_templates_batch(self,
templates: List[Dict[str, str]],
batch_size: int = 8,
fine_tune_ner: bool = False) -> None:
"""Traitement avancé avec option de fine-tuning NER"""
if fine_tune_ner:
logger.info("Fine-tuning du modèle NER sur les templates...")
self.ner_extractor.fine_tune_on_templates(templates)
logger.info(f"Traitement avancé de {len(templates)} templates")
for i in tqdm(range(0, len(templates), batch_size), desc="Traitement avancé"):
batch = templates[i:i+batch_size]
for template in batch:
try:
template_id = template['id']
template_text = template['text']
metadata = template.get('metadata', {})
# NER avancé
entities = self.ner_extractor.extract_entities(template_text)
# Embedding enrichi
embedding = self.embedding_generator.generate_embedding(template_text, entities)
# Stockage avec métadonnées NER
self.vector_db.add_template(
template_id=template_id,
template_text=template_text,
embedding=embedding,
entities=entities,
metadata=metadata
)
except Exception as e:
logger.error(f"Erreur traitement template {template.get('id', 'unknown')}: {e}")
continue
def find_best_template_with_reranking(self,
transcription: str,
initial_candidates: int = 10,
final_results: int = 3) -> List[Dict]:
"""Recherche optimale avec reranking cross-encoder"""
# 1. Extraction NER de la transcription
query_entities = self.ner_extractor.extract_entities(transcription)
# 2. Génération embedding enrichi
query_embedding = self.embedding_generator.generate_embedding(transcription, query_entities)
# 3. Filtres automatiques basés sur entités extraites
entity_filters = {}
if query_entities.exam_types:
entity_filters['exam_types'] = [entity[0] for entity in query_entities.exam_types]
if query_entities.specialties:
entity_filters['specialties'] = [entity[0] for entity in query_entities.specialties]
if query_entities.anatomical_regions:
entity_filters['anatomical_regions'] = [entity[0] for entity in query_entities.anatomical_regions]
# 4. Recherche vectorielle initiale
initial_candidates_results = self.vector_db.advanced_search(
query_embedding=query_embedding,
n_results=initial_candidates,
entity_filters=entity_filters,
confidence_threshold=0.6
)
# 5. Reranking avec cross-encoder
if len(initial_candidates_results) > final_results:
final_results_reranked = self.embedding_generator.cross_encoder_rerank(
query=transcription,
candidates=initial_candidates_results,
top_k=final_results
)
else:
final_results_reranked = initial_candidates_results
# 6. Enrichissement des résultats avec détails NER
for result in final_results_reranked:
result['query_entities'] = {
'exam_types': query_entities.exam_types,
'specialties': query_entities.specialties,
'anatomical_regions': query_entities.anatomical_regions,
'pathologies': query_entities.pathologies
}
return final_results_reranked
# Exemple d'utilisation avancée
def main():
"""Exemple d'utilisation du système avancé"""
# Initialisation du processeur avancé
processor = AdvancedMedicalTemplateProcessor()
# Traitement des templates avec fine-tuning optionnel
sample_templates = [
{
'id': 'angio_001',
'text': """Échographie et doppler artério-veineux des membres inférieurs.
Exploration de l'incontinence veineuse superficielle...""",
'metadata': {'source': 'angiologie', 'version': '2024'}
}
]
# Traitement avec fine-tuning NER
processor.process_templates_batch(sample_templates, fine_tune_ner=False)
# Recherche avec reranking
transcription = """madame bacon nicole bilan œdème droit gonalgies ostéophytes
incontinence veineuse modérée portions surale droite crurale gauche saphéniennes"""
best_matches = processor.find_best_template_with_reranking(
transcription=transcription,
initial_candidates=15,
final_results=3
)
# Affichage des résultats
for i, match in enumerate(best_matches):
print(f"\n=== Match {i+1} ===")
print(f"Template ID: {match['id']}")
print(f"Score final: {match.get('final_score', match['similarity_score']):.4f}")
print(f"Score cross-encoder: {match.get('cross_encoder_score', 'N/A')}")
print(f"Entités détectées dans la query:")
for entity_type, entities in match.get('query_entities', {}).items():
if entities:
print(f" - {entity_type}: {[f'{e[0]} ({e[1]:.2f})' for e in entities]}")
if __name__ == "__main__":
main() |