|
|
import spacy |
|
|
import openai |
|
|
import re |
|
|
from typing import Dict, List, Tuple |
|
|
import json |
|
|
from dataclasses import dataclass |
|
|
from datetime import datetime |
|
|
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline |
|
|
import os |
|
|
from dotenv import load_dotenv |
|
|
from openai import AzureOpenAI |
|
|
from medkit.core.text import TextDocument |
|
|
from medkit.text.ner.hf_entity_matcher import HFEntityMatcher |
|
|
|
|
|
NER_MODEL = os.getenv("NER_MODEL", "medkit/DrBERT-CASM2") |
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
AZURE_OPENAI_KEY = os.getenv("AZURE_OPENAI_KEY") |
|
|
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT") |
|
|
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT") |
|
|
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION", "2024-05-01-preview") |
|
|
|
|
|
|
|
|
def validate_azure_config(): |
|
|
"""Valide que toutes les variables Azure sont configurées""" |
|
|
missing_vars = [] |
|
|
if not AZURE_OPENAI_KEY: |
|
|
missing_vars.append("AZURE_OPENAI_KEY") |
|
|
if not AZURE_OPENAI_ENDPOINT: |
|
|
missing_vars.append("AZURE_OPENAI_ENDPOINT") |
|
|
if not AZURE_OPENAI_DEPLOYMENT: |
|
|
missing_vars.append("AZURE_OPENAI_DEPLOYMENT") |
|
|
|
|
|
if missing_vars: |
|
|
print(f"❌ Variables d'environnement manquantes: {', '.join(missing_vars)}") |
|
|
print("📝 Veuillez créer un fichier .env avec:") |
|
|
for var in missing_vars: |
|
|
print(f" {var}=votre_valeur") |
|
|
return False |
|
|
return True |
|
|
|
|
|
|
|
|
azure_client = None |
|
|
if validate_azure_config(): |
|
|
try: |
|
|
azure_client = AzureOpenAI( |
|
|
api_key=AZURE_OPENAI_KEY, |
|
|
api_version=AZURE_OPENAI_API_VERSION, |
|
|
azure_endpoint=AZURE_OPENAI_ENDPOINT, |
|
|
) |
|
|
print("✅ Client Azure OpenAI initialisé avec succès") |
|
|
except Exception as e: |
|
|
print(f"❌ Erreur lors de l'initialisation du client Azure OpenAI: {e}") |
|
|
azure_client = None |
|
|
|
|
|
ner_matcher = HFEntityMatcher(model=NER_MODEL) |
|
|
|
|
|
@dataclass |
|
|
class CorrectionResult: |
|
|
original_text: str |
|
|
ner_corrected_text: str |
|
|
final_corrected_text: str |
|
|
medical_entities: List[Dict] |
|
|
confidence_score: float |
|
|
|
|
|
class MedicalNERCorrector: |
|
|
"""Correcteur orthographique basé sur un NER médical français""" |
|
|
|
|
|
def __init__(self): |
|
|
try: |
|
|
|
|
|
self.matcher = HFEntityMatcher(model=NER_MODEL) |
|
|
print(f"✅ Modèle NER '{NER_MODEL}' chargé avec succès") |
|
|
except Exception as e: |
|
|
print(f"❌ Erreur lors du chargement du modèle NER {NER_MODEL}: {e}") |
|
|
self.matcher = None |
|
|
|
|
|
|
|
|
self.number_corrections = { |
|
|
|
|
|
"zéro": "0", "un": "1", "deux": "2", "trois": "3", "quatre": "4", |
|
|
"cinq": "5", "six": "6", "sept": "7", "huit": "8", "neuf": "9", |
|
|
"dix": "10", "onze": "11", "douze": "12", "treize": "13", "quatorze": "14", |
|
|
"quinze": "15", "seize": "16", "dix-sept": "17", "dix-huit": "18", |
|
|
"dix-neuf": "19", "vingt": "20", "trente": "30", "quarante": "40", |
|
|
"cinquante": "50", "soixante": "60", "soixante-dix": "70", |
|
|
"quatre-vingts": "80", "quatre-vingt": "80", "quatre-vingt-dix": "90", |
|
|
"cent": "100", "mille": "1000", |
|
|
|
|
|
|
|
|
"1": "1", "1er": "1", "première": "1", "premier": "1", |
|
|
"2ème": "2", "deuxième": "2", "second": "2", "seconde": "2", |
|
|
"3ème": "3", "troisième": "3", "4ème": "4", "quatrième": "4", |
|
|
"5ème": "5", "cinquième": "5", "6ème": "6", "sixième": "6", |
|
|
"7ème": "7", "septième": "7", "8ème": "8", "huitième": "8", |
|
|
"9ème": "9", "neuvième": "9", "10ème": "10", "dixième": "10", |
|
|
} |
|
|
|
|
|
|
|
|
self.vocal_corrections = { |
|
|
|
|
|
"point à la ligne": ".\n", |
|
|
"retour à la ligne": "\n", |
|
|
"à la ligne": "\n", |
|
|
"nouvelle ligne": "\n", |
|
|
"saut de ligne": "\n", |
|
|
"point virgule": ";", |
|
|
"deux points": ":", |
|
|
"point d'interrogation": "?", |
|
|
"point d'exclamation": "!", |
|
|
"virgule": ",", |
|
|
"point": ".", |
|
|
|
|
|
|
|
|
"T un": "T1", "T deux": "T2", "T trois": "T3", |
|
|
"t un": "T1", "t deux": "T2", "t trois": "T3", |
|
|
"séquence T un": "séquence T1", "séquence T deux": "séquence T2", |
|
|
|
|
|
|
|
|
"C un": "C1", "C deux": "C2", "C trois": "C3", "C quatre": "C4", |
|
|
"C cinq": "C5", "C six": "C6", "C sept": "C7", |
|
|
"c un": "C1", "c deux": "C2", "c trois": "C3", "c quatre": "C4", |
|
|
"c cinq": "C5", "c six": "C6", "c sept": "C7", |
|
|
|
|
|
|
|
|
"T un": "T1", "T deux": "T2", "T trois": "T3", "T quatre": "T4", |
|
|
"T cinq": "T5", "T six": "T6", "T sept": "T7", "T huit": "T8", |
|
|
"T neuf": "T9", "T dix": "T10", "T onze": "T11", "T douze": "T12", |
|
|
|
|
|
|
|
|
"L un": "L1", "L deux": "L2", "L trois": "L3", "L quatre": "L4", "L cinq": "L5", |
|
|
"l un": "L1", "l deux": "L2", "l trois": "L3", "l quatre": "L4", "l cinq": "L5", |
|
|
|
|
|
|
|
|
"S un": "S1", "S deux": "S2", "S trois": "S3", "S quatre": "S4", "S cinq": "S5", |
|
|
"s un": "S1", "s deux": "S2", "s trois": "S3", "s quatre": "S4", "s cinq": "S5", |
|
|
} |
|
|
|
|
|
|
|
|
self.medical_corrections = { |
|
|
|
|
|
"rachis": ["rachis", "rachi", "rachys", "rahis", "raxis"], |
|
|
"cervical": ["cervical", "cervicale", "cervicaux", "servical", "servicale"], |
|
|
"vertébraux": ["vertébraux", "vertebraux", "vertébrau", "vertébral", "vertebral"], |
|
|
"médullaire": ["médullaire", "medullaire", "medulaire", "médulaire"], |
|
|
"foraminal": ["foraminal", "foraminale", "foraminaux", "forraminal"], |
|
|
"postérolatéral": ["postérolatéral", "posterolatéral", "postero-latéral", "postero latéral"], |
|
|
"antérolatéral": ["antérolatéral", "anterolatéral", "antero-latéral", "antero latéral"], |
|
|
"longitudinal": ["longitudinal", "longitudinale", "longitudinaux"], |
|
|
|
|
|
|
|
|
"uncarthrose": ["uncarthrose", "uncoarthrose", "uncartrose", "unkarthrose"], |
|
|
"lordose": ["lordose", "lordoze", "lordosse", "lordosse"], |
|
|
"cyphose": ["cyphose", "siphose", "kyphose", "kiphose"], |
|
|
"scoliose": ["scoliose", "skoliose", "scholiose"], |
|
|
"discopathie": ["discopathie", "disccopathie", "discopatie"], |
|
|
"discal": ["discal", "discale", "diskal", "diskale", "disque"], |
|
|
"hernie": ["hernie", "herny", "herni"], |
|
|
"protrusion": ["protrusion", "protusion", "protruzion"], |
|
|
"sténose": ["sténose", "stenose", "sténoze"], |
|
|
"arthrose": ["arthrose", "artrose", "arthroze"], |
|
|
"ostéophyte": ["ostéophyte", "osteophyte", "ostéofite"], |
|
|
"ligamentaire": ["ligamentaire", "ligamentere", "ligamentair"], |
|
|
|
|
|
|
|
|
"sagittal": ["sagittal", "sagittale", "sagital", "sagittaux"], |
|
|
"coronal": ["coronal", "coronale", "coronaux"], |
|
|
"axial": ["axial", "axiale", "axiaux", "axial"], |
|
|
"transversal": ["transversal", "transversale", "transversaux"], |
|
|
"pondéré": ["pondéré", "pondéré", "pondere", "pondérée"], |
|
|
"séquence": ["séquence", "sequence", "sekence"], |
|
|
"contraste": ["contraste", "contraste", "kontraste"], |
|
|
"gadolinium": ["gadolinium", "gadoliniun", "gadoliniom"], |
|
|
|
|
|
|
|
|
"millimètre": ["millimètre", "millimetre", "mm"], |
|
|
"centimètre": ["centimètre", "centimetre", "cm"], |
|
|
"gauche": ["gauche", "gosh", "goshe", "goche"], |
|
|
"droite": ["droite", "droitte", "droithe", "droitr"], |
|
|
"antérieur": ["antérieur", "anterieur", "antérieure", "anterieure"], |
|
|
"postérieur": ["postérieur", "posterieur", "postérieure", "posterieure"], |
|
|
"supérieur": ["supérieur", "superieur", "supérieure", "superieure"], |
|
|
"inférieur": ["inférieur", "inferieur", "inférieure", "inferieure"], |
|
|
"médian": ["médian", "median", "mediane", "médiane"], |
|
|
"latéral": ["latéral", "lateral", "laterale", "latérale"], |
|
|
|
|
|
|
|
|
"signal": ["signal", "signale", "signa", "signaux"], |
|
|
"hypersignal": ["hypersignal", "hyper signal", "hypersignale"], |
|
|
"hyposignal": ["hyposignal", "hypo signal", "hyposignale"], |
|
|
"isosignal": ["isosignal", "iso signal", "isosignale"], |
|
|
"hétérogène": ["hétérogène", "heterogene", "hétérogène"], |
|
|
"homogène": ["homogène", "homogene", "omogene"], |
|
|
|
|
|
|
|
|
"dimension": ["dimension", "dimention", "dimmension"], |
|
|
"normale": ["normale", "normal", "normalle"], |
|
|
"anomalie": ["anomalie", "annomalie", "anomaly"], |
|
|
"décelable": ["décelable", "decelabl", "décellabl"], |
|
|
"absence": ["absence", "abscence", "absance"], |
|
|
"présence": ["présence", "presence", "presance"], |
|
|
"contact": ["contact", "contacte", "kontak"], |
|
|
"compression": ["compression", "compresion", "kompression"], |
|
|
} |
|
|
|
|
|
|
|
|
self.medical_patterns = { |
|
|
"vertebral_level": r"[CTLS]\d+[\s-]*[CTLS]\d+", |
|
|
"measurement": r"\d+[\s]*[x×]\s*\d+\s*mm", |
|
|
"technique": r"T[1-3]", |
|
|
} |
|
|
|
|
|
def convert_numbers_to_digits(self, text: str) -> str: |
|
|
"""Convertit TOUS les nombres en lettres vers des chiffres""" |
|
|
corrected_text = text |
|
|
|
|
|
|
|
|
medical_measures = { |
|
|
|
|
|
"sept point huit": "7,8", |
|
|
"trois sept": "3,7", |
|
|
"soixante": "60", |
|
|
|
|
|
|
|
|
"vingt six": "26", |
|
|
|
|
|
"vingt cinq": "25", |
|
|
"dix neuf": "19", |
|
|
"vingt deux": "22", |
|
|
|
|
|
|
|
|
"trois vingt quatre": "3,24", |
|
|
"quatre vingt onze": "0,91", |
|
|
|
|
|
|
|
|
"quinze": "15", |
|
|
} |
|
|
|
|
|
|
|
|
for word_measure, digit_measure in medical_measures.items(): |
|
|
pattern = r'\b' + re.escape(word_measure) + r'\b' |
|
|
corrected_text = re.sub(pattern, digit_measure, corrected_text, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
compound_without_dash = { |
|
|
"vingt un": "21", "vingt deux": "22", "vingt trois": "23", "vingt quatre": "24", |
|
|
"vingt cinq": "25", "vingt six": "26", "vingt sept": "27", "vingt huit": "28", |
|
|
"vingt neuf": "29", "trente un": "31", "trente deux": "32", "trente trois": "33", |
|
|
"trente quatre": "34", "trente cinq": "35", "trente six": "36", "trente sept": "37", |
|
|
"trente huit": "38", "trente neuf": "39", "quarante un": "41", "quarante deux": "42", |
|
|
"quarante trois": "43", "quarante quatre": "44", "quarante cinq": "45", |
|
|
"quarante six": "46", "quarante sept": "47", "quarante huit": "48", "quarante neuf": "49", |
|
|
"cinquante un": "51", "cinquante deux": "52", "cinquante trois": "53", |
|
|
"cinquante quatre": "54", "cinquante cinq": "55", "cinquante six": "56", |
|
|
"cinquante sept": "57", "cinquante huit": "58", "cinquante neuf": "59", |
|
|
"soixante un": "61", "soixante deux": "62", "soixante trois": "63", |
|
|
"soixante quatre": "64", "soixante cinq": "65", "soixante six": "66", |
|
|
"soixante sept": "67", "soixante huit": "68", "soixante neuf": "69", |
|
|
"soixante et onze": "71", "soixante douze": "72", "soixante treize": "73", |
|
|
"soixante quatorze": "74", "soixante quinze": "75", "soixante seize": "76", |
|
|
"soixante dix sept": "77", "soixante dix huit": "78", "soixante dix neuf": "79", |
|
|
"quatre vingt un": "81", "quatre vingt deux": "82", "quatre vingt trois": "83", |
|
|
"quatre vingt quatre": "84", "quatre vingt cinq": "85", "quatre vingt six": "86", |
|
|
"quatre vingt sept": "87", "quatre vingt huit": "88", "quatre vingt neuf": "89", |
|
|
"quatre vingt onze": "91", "quatre vingt douze": "92", "quatre vingt treize": "93", |
|
|
"quatre vingt quatorze": "94", "quatre vingt quinze": "95", "quatre vingt seize": "96", |
|
|
"quatre vingt dix sept": "97", "quatre vingt dix huit": "98", "quatre vingt dix neuf": "99", |
|
|
|
|
|
} |
|
|
|
|
|
for word, digit in compound_without_dash.items(): |
|
|
|
|
|
pattern = r'\b' + re.escape(word) + r'\b(?!\s+fois\s+\w+)' |
|
|
corrected_text = re.sub(pattern, digit, corrected_text, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
simple_numbers = { |
|
|
"zéro": "0", "un": "1", "deux": "2", "trois": "3", "quatre": "4", |
|
|
"cinq": "5", "six": "6", "sept": "7", "huit": "8", "neuf": "9", |
|
|
"dix": "10", "onze": "11", "douze": "12", "treize": "13", "quatorze": "14", |
|
|
"quinze": "15", "seize": "16", "dix-sept": "17", "dix-huit": "18", |
|
|
"dix-neuf": "19", "vingt": "20", "trente": "30", "quarante": "40", |
|
|
"cinquante": "50", "soixante-dix": "70", |
|
|
"quatre-vingts": "80", "quatre-vingt": "80", "quatre-vingt-dix": "90", |
|
|
"cent": "100", "mille": "1000", |
|
|
} |
|
|
|
|
|
|
|
|
for word_number, digit in simple_numbers.items(): |
|
|
pattern = r'\b' + re.escape(word_number) + r'\b' |
|
|
corrected_text = re.sub(pattern, digit, corrected_text, flags=re.IGNORECASE) |
|
|
|
|
|
return corrected_text |
|
|
|
|
|
def extract_medical_entities(self, text: str): |
|
|
"""Extrait les entités médicales avec MedKit HFEntityMatcher""" |
|
|
if not self.matcher: |
|
|
return [] |
|
|
doc = TextDocument(text) |
|
|
entities = self.matcher.run([doc.raw_segment]) |
|
|
|
|
|
formatted_entities = [] |
|
|
for ent in entities: |
|
|
formatted_entities.append({ |
|
|
"text": ent.text, |
|
|
"label": ent.label, |
|
|
}) |
|
|
return formatted_entities |
|
|
|
|
|
def correct_vocal_transcription(self, text: str) -> str: |
|
|
"""Corrige les transcriptions vocales avec un ordre de priorité strict""" |
|
|
corrected_text = text |
|
|
|
|
|
|
|
|
corrected_text = self.convert_numbers_to_digits(corrected_text) |
|
|
|
|
|
|
|
|
|
|
|
priority_corrections = [ |
|
|
|
|
|
("point à la ligne", ".\n"), |
|
|
("retour à la ligne", "\n"), |
|
|
("à la ligne", "\n"), |
|
|
("nouvelle ligne", "\n"), |
|
|
("saut de ligne", "\n"), |
|
|
("point virgule", ";"), |
|
|
("deux points", ":"), |
|
|
("point d'interrogation", "?"), |
|
|
("point d'exclamation", "!"), |
|
|
|
|
|
|
|
|
("C 1", "C1"), ("C 2", "C2"), ("C 3", "C3"), ("C 4", "C4"), |
|
|
("C 5", "C5"), ("C 6", "C6"), ("C 7", "C7"), |
|
|
("L 1", "L1"), ("L 2", "L2"), ("L 3", "L3"), ("L 4", "L4"), ("L 5", "L5"), |
|
|
("T 1", "T1"), ("T 2", "T2"), ("T 3", "T3"), ("T 4", "T4"), |
|
|
("T 5", "T5"), ("T 6", "T6"), ("T 7", "T7"), ("T 8", "T8"), |
|
|
("T 9", "T9"), ("T 10", "T10"), ("T 11", "T11"), ("T 12", "T12"), |
|
|
|
|
|
|
|
|
("séquence T 1", "séquence T1"), ("séquence T 2", "séquence T2"), |
|
|
|
|
|
|
|
|
("virgule", ","), |
|
|
] |
|
|
|
|
|
for vocal_term, replacement in priority_corrections: |
|
|
|
|
|
pattern = r'\b' + re.escape(vocal_term) + r'\b' |
|
|
corrected_text = re.sub(pattern, replacement, corrected_text, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
|
|
|
corrected_text = re.sub(r'\bpoint(?!\s+(?:à|d\'|virgule))', '.', corrected_text, flags=re.IGNORECASE) |
|
|
|
|
|
return corrected_text |
|
|
|
|
|
def correct_medical_terms(self, text: str) -> str: |
|
|
"""Corrige les termes médicaux basés sur le dictionnaire""" |
|
|
corrected_text = text |
|
|
|
|
|
for correct_term, variations in self.medical_corrections.items(): |
|
|
for variation in variations: |
|
|
if variation != correct_term: |
|
|
|
|
|
pattern = r'\b' + re.escape(variation) + r'\b' |
|
|
|
|
|
def replace_with_case(match): |
|
|
matched_text = match.group(0) |
|
|
if matched_text[0].isupper(): |
|
|
return correct_term.capitalize() |
|
|
return correct_term |
|
|
|
|
|
corrected_text = re.sub(pattern, replace_with_case, corrected_text, flags=re.IGNORECASE) |
|
|
|
|
|
return corrected_text |
|
|
|
|
|
def normalize_medical_patterns(self, text: str) -> str: |
|
|
"""Normalise les patterns médicaux avec gestion des mesures""" |
|
|
normalized_text = text |
|
|
|
|
|
|
|
|
|
|
|
normalized_text = re.sub(r'(\d+(?:[.,]\d+)?)\s+fois\s+(\d+(?:[.,]\d+)?)', r'\1 x \2', normalized_text, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
normalized_text = re.sub(r'([CTLS])(\d)\s*([CTLS])?(\d)', lambda m: f"{m.group(1)}{m.group(2)}-{m.group(1)}{m.group(4)}", normalized_text, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
normalized_text = re.sub(r'(\d+(?:[.,]\d+)?)\s*[x×]\s*(\d+(?:[.,]\d+)?)\s*mm', r'\1 x \2 mm', normalized_text) |
|
|
|
|
|
|
|
|
normalized_text = re.sub(r'(\d+(?:[.,]\d+)?)\s*x\s*(\d+(?:[.,]\d+)?)(?!\s*(?:mm|cm))', r'\1 x \2 mm', normalized_text, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
normalized_text = re.sub(r'(\d+(?:[.,]\d+)?)\s*millimètres?', r'\1 mm', normalized_text, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
normalized_text = re.sub(r"d['’]?hystérométrie\s+(\d+(?:[.,]\d+)?)", r"d'hystérométrie : \1 mm", normalized_text, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
normalized_text = re.sub(r"d['’]?endomètre\s+(\d+(?:[.,]\d+)?)", r"d'endometre : \1 mm", normalized_text, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
normalized_text = re.sub(r'(\d+)\s+follicules', r'CFA \1 follicules', normalized_text, flags=re.IGNORECASE) |
|
|
|
|
|
return normalized_text |
|
|
|
|
|
def clean_spacing_and_formatting(self, text: str) -> str: |
|
|
"""Nettoie les espaces et améliore le formatage avec ajouts spécifiques""" |
|
|
|
|
|
text = re.sub(r'[ \t]+', ' ', text) |
|
|
|
|
|
|
|
|
|
|
|
text = re.sub(r'(\d+)\.\s+(\d+)(?!\s*(?:mm|cm|fois|x))', r'\1,\2', text) |
|
|
|
|
|
|
|
|
text = re.sub(r'\b20\s+6\b', '26', text) |
|
|
text = re.sub(r'\b20\s+5\b', '25', text) |
|
|
text = re.sub(r'\b10\s+9\b', '19', text) |
|
|
text = re.sub(r'\b20\s+2\b', '22', text) |
|
|
text = re.sub(r'\b20\s+7\b', '27', text) |
|
|
text = re.sub(r'\b3\s+20\s+4\b', '3,24', text) |
|
|
text = re.sub(r'\b4\s+20\s+11\b', '0,91', text) |
|
|
|
|
|
|
|
|
text = re.sub(r'\s+([.,:;!?])', r'\1', text) |
|
|
|
|
|
|
|
|
text = re.sub(r'([.,:;!?])([A-Za-z])', r'\1 \2', text) |
|
|
|
|
|
|
|
|
text = re.sub(r'\bl\s+([aeiouAEIOU])', r"l'\1", text) |
|
|
text = re.sub(r'\bd\s+([aeiouAEIOU])', r"d'\1", text) |
|
|
|
|
|
|
|
|
text = re.sub(r'\n\s*\n\s*\n+', '\n\n', text) |
|
|
|
|
|
|
|
|
lines = text.split('\n') |
|
|
lines = [line.strip() for line in lines] |
|
|
text = '\n'.join(lines) |
|
|
|
|
|
|
|
|
text = re.sub(r'(\.\s+)([a-z])', lambda m: m.group(1) + m.group(2).upper(), text) |
|
|
|
|
|
|
|
|
if text and text[0].islower(): |
|
|
text = text[0].upper() + text[1:] |
|
|
|
|
|
return text.strip() |
|
|
def post_process_gynecology_report(self, text: str) -> str: |
|
|
"""Post-traitement spécialisé pour les rapports gynécologiques""" |
|
|
processed_text = text |
|
|
|
|
|
|
|
|
processed_text = re.sub( |
|
|
r'utérus est (\w+)\s+(\d+,\d+)', |
|
|
r'utérus est \1 de taille \2 cm', |
|
|
processed_text, |
|
|
flags=re.IGNORECASE |
|
|
) |
|
|
|
|
|
|
|
|
processed_text = re.sub( |
|
|
r'ovaire (droit|gauche) (\d+ x \d+ mm)', |
|
|
r'ovaire \1 mesure \2,', |
|
|
processed_text, |
|
|
flags=re.IGNORECASE |
|
|
) |
|
|
|
|
|
|
|
|
processed_text = re.sub( |
|
|
r'CFA (\d+) follicules', |
|
|
r'CFA : \1 follicules', |
|
|
processed_text, |
|
|
flags=re.IGNORECASE |
|
|
) |
|
|
|
|
|
|
|
|
processed_text = re.sub( |
|
|
r'doppler.*?(\d,\d+).*?(\d,\d+)', |
|
|
r'Doppler : IP \1 - IR \2', |
|
|
processed_text, |
|
|
flags=re.IGNORECASE |
|
|
) |
|
|
|
|
|
return processed_text |
|
|
|
|
|
class GPTMedicalFormatter: |
|
|
"""Formateur de rapports médicaux utilisant GPT""" |
|
|
|
|
|
def __init__(self, model: str = AZURE_OPENAI_DEPLOYMENT): |
|
|
self.model = model |
|
|
|
|
|
self.system_prompt = """ |
|
|
Tu es un expert en transcription médicale française. Tu dois corriger et formater UNIQUEMENT les erreurs évidentes dans ce texte médical déjà pré-traité. |
|
|
|
|
|
RÈGLES STRICTES À APPLIQUER : |
|
|
|
|
|
1. **PONCTUATION** : |
|
|
- Supprime les doubles ponctuations : ",." → "." |
|
|
- Supprime ".." → "." |
|
|
- Corrige ",?" → "?" |
|
|
|
|
|
2. **PARENTHÈSES** déjà converties mais nettoie si nécessaire |
|
|
|
|
|
3. **ORTHOGRAPHE MÉDICALE** : |
|
|
- "supérieur" au lieu de "supérieure" pour les adjectifs masculins |
|
|
- "Discrète" → "Discret" pour les termes masculins |
|
|
- Autres termes médicaux mal orthographiés |
|
|
|
|
|
4. **FORMATAGE** : |
|
|
- Assure-toi que chaque phrase se termine par un point |
|
|
- Capitalise après les points |
|
|
- Supprime les espaces inutiles |
|
|
|
|
|
5. **INTERDICTIONS** : |
|
|
- NE change PAS le contenu médical |
|
|
- NE reformule PAS les phrases |
|
|
- NE change PAS l'ordre des informations |
|
|
- NE supprime PAS d'informations médicales |
|
|
|
|
|
OBJECTIF : Rendre le texte médical propre et professionnel en gardant EXACTEMENT le même contenu. |
|
|
|
|
|
Texte à corriger : |
|
|
""" |
|
|
|
|
|
def format_medical_report(self, text: str) -> str: |
|
|
"""Formate le rapport médical avec GPT""" |
|
|
if not azure_client: |
|
|
print("❌ Client Azure OpenAI non disponible - utilisation du texte NER seulement") |
|
|
return text |
|
|
|
|
|
try: |
|
|
print("🔄 Appel à l'API Azure OpenAI en cours...") |
|
|
response = azure_client.chat.completions.create( |
|
|
model=self.model, |
|
|
messages=[ |
|
|
{"role": "system", "content": self.system_prompt}, |
|
|
{"role": "user", "content": f"Corrigez et formatez cette transcription médicale en préservant tous les sauts de ligne et le contenu médical:\n\n{text}"} |
|
|
], |
|
|
|
|
|
|
|
|
) |
|
|
result = response.choices[0].message.content.strip() |
|
|
print("✅ Réponse reçue de l'API Azure OpenAI") |
|
|
return result |
|
|
|
|
|
except Exception as e: |
|
|
print(f"❌ Erreur lors de l'appel à l'API Azure OpenAI: {e}") |
|
|
print(f" Type d'erreur: {type(e).__name__}") |
|
|
if hasattr(e, 'response'): |
|
|
print(f" Code de statut: {e.response.status_code if hasattr(e.response, 'status_code') else 'N/A'}") |
|
|
print("🔄 Utilisation du texte corrigé par NER seulement") |
|
|
return text |
|
|
|
|
|
class MedicalTranscriptionProcessor: |
|
|
"""Processeur principal pour les transcriptions médicales""" |
|
|
|
|
|
def __init__(self, deployment: str = AZURE_OPENAI_DEPLOYMENT): |
|
|
self.ner_corrector = MedicalNERCorrector() |
|
|
self.gpt_formatter = GPTMedicalFormatter(deployment) |
|
|
|
|
|
def process_transcription(self, text: str) -> CorrectionResult: |
|
|
"""Traite une transcription médicale complète - TRAITEMENT OBLIGATOIRE EN 2 ÉTAPES""" |
|
|
print("🏥 Démarrage du traitement de la transcription médicale...") |
|
|
print("⚠️ TRAITEMENT EN 2 ÉTAPES OBLIGATOIRES: NER + GPT") |
|
|
|
|
|
|
|
|
print("\n🔧 ÉTAPE 1/2: CORRECTIONS NER (Nombres, Ponctuation, Orthographe)") |
|
|
print("-" * 60) |
|
|
|
|
|
|
|
|
print(" 🎤 Correction des transcriptions vocales et conversion des nombres...") |
|
|
vocal_corrected = self.ner_corrector.correct_vocal_transcription(text) |
|
|
|
|
|
|
|
|
print(" 📋 Extraction des entités médicales...") |
|
|
medical_entities = self.ner_corrector.extract_medical_entities(vocal_corrected) |
|
|
print(f" ✅ {len(medical_entities)} entités médicales détectées") |
|
|
|
|
|
|
|
|
print(" ✏️ Correction orthographique des termes médicaux...") |
|
|
ner_corrected = self.ner_corrector.correct_medical_terms(vocal_corrected) |
|
|
|
|
|
|
|
|
print(" 🔧 Normalisation des patterns médicaux...") |
|
|
ner_corrected = self.ner_corrector.normalize_medical_patterns(ner_corrected) |
|
|
|
|
|
|
|
|
print(" 🧹 Nettoyage du formatage...") |
|
|
ner_corrected = self.ner_corrector.post_process_gynecology_report(ner_corrected) |
|
|
|
|
|
|
|
|
print("✅ ÉTAPE 1 TERMINÉE: Corrections NER appliquées") |
|
|
|
|
|
|
|
|
print("\n🤖 ÉTAPE 2/2: FORMATAGE PROFESSIONNEL AVEC GPT") |
|
|
print("-" * 60) |
|
|
print(" 📝 Structuration du rapport médical...") |
|
|
print(" 🎯 Amélioration de la lisibilité...") |
|
|
print(" 📋 Organisation en sections médicales...") |
|
|
|
|
|
final_corrected = self.gpt_formatter.format_medical_report(ner_corrected) |
|
|
|
|
|
if final_corrected != ner_corrected: |
|
|
print("✅ ÉTAPE 2 TERMINÉE: Formatage GPT appliqué avec succès") |
|
|
else: |
|
|
print("⚠️ ÉTAPE 2: GPT non disponible - utilisation du résultat NER") |
|
|
|
|
|
|
|
|
confidence_score = self._calculate_confidence_score(text, final_corrected, medical_entities) |
|
|
|
|
|
print(f"\n🎯 TRAITEMENT COMPLET TERMINÉ - Score de confiance: {confidence_score:.2%}") |
|
|
|
|
|
return CorrectionResult( |
|
|
original_text=text, |
|
|
ner_corrected_text=ner_corrected, |
|
|
final_corrected_text=final_corrected, |
|
|
medical_entities=medical_entities, |
|
|
confidence_score=confidence_score |
|
|
) |
|
|
|
|
|
def process_without_gpt(self, text: str) -> str: |
|
|
print("⚠️ ATTENTION: Traitement partiel sans GPT (pour tests uniquement)") |
|
|
print("💡 Pour un résultat professionnel, utilisez process_transcription() avec une clé API") |
|
|
|
|
|
vocal_corrected = self.ner_corrector.correct_vocal_transcription(text) |
|
|
medical_corrected = self.ner_corrector.correct_medical_terms(vocal_corrected) |
|
|
normalized = self.ner_corrector.normalize_medical_patterns(medical_corrected) |
|
|
cleaned = self.ner_corrector.clean_spacing_and_formatting(normalized) |
|
|
return cleaned |
|
|
|
|
|
def _calculate_confidence_score(self, original: str, corrected: str, entities: List[Dict]) -> float: |
|
|
"""Calcule un score de confiance pour la correction""" |
|
|
entity_score = min(len(entities) / 10, 1.0) |
|
|
similarity_score = len(set(original.split()) & set(corrected.split())) / len(set(original.split())) |
|
|
return (entity_score + similarity_score) / 2 |
|
|
|
|
|
def test_azure_connection(): |
|
|
"""Test de connexion à Azure OpenAI""" |
|
|
if not azure_client: |
|
|
print("❌ Client Azure OpenAI non initialisé") |
|
|
return False |
|
|
|
|
|
try: |
|
|
print("🔍 Test de connexion à Azure OpenAI...") |
|
|
response = azure_client.chat.completions.create( |
|
|
model=AZURE_OPENAI_DEPLOYMENT, |
|
|
messages=[{"role": "user", "content": "Test de connexion"}] |
|
|
|
|
|
) |
|
|
print("✅ Connexion Azure OpenAI réussie") |
|
|
return True |
|
|
except Exception as e: |
|
|
print(f"❌ Erreur de connexion Azure OpenAI: {e}") |
|
|
return False |
|
|
|
|
|
def main(): |
|
|
"""Fonction principale de démonstration""" |
|
|
|
|
|
|
|
|
print("=" * 80) |
|
|
print("🔧 VÉRIFICATION DE LA CONFIGURATION") |
|
|
print("=" * 80) |
|
|
|
|
|
print(f"📍 Endpoint Azure: {AZURE_OPENAI_ENDPOINT}") |
|
|
print(f"🤖 Deployment: {AZURE_OPENAI_DEPLOYMENT}") |
|
|
print(f"🔑 Clé API: {'✅ Configurée' if AZURE_OPENAI_KEY else '❌ Manquante'}") |
|
|
|
|
|
|
|
|
if not test_azure_connection(): |
|
|
print("\n⚠️ Azure OpenAI non disponible - le traitement continuera avec NER seulement") |
|
|
|
|
|
|
|
|
exemple_transcription = """irm pelvienne indication clinique point technique acquisition sagittale axiale et coronale t deux saturation axiale diffusion axiale t un résultats présence d un utérus antéversé médio pelvien dont le grand axe mesure soixante douze mm sur quarante millimètre sur quarante mm point la zone jonctionnelle apparaît floue point elle est épaissie de façon diffuse asymétrique avec une atteinte de plus de cinquante pour cent de l épaisseur du myomètre et comporte des spots en hypersignal t deux l ensemble traduisant une adénomyose point à la ligne pas d épaississement cervical à noter la présence d un petit kyste liquidien de type naboth point à la ligne les deux ovaires sont repérés porteurs de formations folliculaires communes en hypersignal homogène t deux de petite taille point l ovaire droit mesure trente fois vingt cinq mm l ovaire gauche vingt cinq fois vingt trois mm point pas d épanchement dans le cul de sac de douglas point à la ligne absence de foyer d endométriose profonde point conclusion points à la ligne aspect d adénomyose diffuse symétrique virgule profonde point à la ligne pas d épaississement endométrial point absence d endométriome point absence d épanchement dans le cul de sac de douglas point""" |
|
|
|
|
|
|
|
|
processor = MedicalTranscriptionProcessor(AZURE_OPENAI_DEPLOYMENT) |
|
|
|
|
|
print("\n" + "="*80) |
|
|
print("🏥 TRAITEMENT COMPLET DE LA TRANSCRIPTION MÉDICALE") |
|
|
print("="*80) |
|
|
|
|
|
|
|
|
result = processor.process_transcription(exemple_transcription) |
|
|
|
|
|
|
|
|
print("\n📄 TEXTE ORIGINAL:") |
|
|
print("-" * 50) |
|
|
print(result.original_text) |
|
|
|
|
|
print(f"\n🔍 ENTITÉS MÉDICALES DÉTECTÉES ({len(result.medical_entities)}):") |
|
|
print("-" * 50) |
|
|
for entity in result.medical_entities: |
|
|
print(f" • {entity['text']} ({entity['label']})") |
|
|
|
|
|
print("\n🎤 APRÈS CORRECTION NER (sans GPT):") |
|
|
print("-" * 50) |
|
|
print(result.ner_corrected_text) |
|
|
|
|
|
print("\n🤖 RAPPORT FINAL FORMATÉ (avec GPT):") |
|
|
print("-" * 50) |
|
|
if result.final_corrected_text: |
|
|
print(result.final_corrected_text) |
|
|
else: |
|
|
print("❌ Aucun résultat GPT - vérifiez votre configuration Azure") |
|
|
|
|
|
print(f"\n📊 SCORE DE CONFIANCE: {result.confidence_score:.2%}") |
|
|
|
|
|
|
|
|
if result.final_corrected_text != result.ner_corrected_text: |
|
|
print("\n🔄 COMPARAISON NER vs GPT:") |
|
|
print("-" * 50) |
|
|
print("📈 Améliorations apportées par GPT:") |
|
|
ner_lines = result.ner_corrected_text.split('\n') |
|
|
gpt_lines = result.final_corrected_text.split('\n') |
|
|
|
|
|
for i, (ner_line, gpt_line) in enumerate(zip(ner_lines, gpt_lines)): |
|
|
if ner_line.strip() != gpt_line.strip(): |
|
|
print(f" Ligne {i+1}:") |
|
|
print(f" NER: {ner_line}") |
|
|
print(f" GPT: {gpt_line}") |
|
|
|
|
|
print("\n" + "="*80) |
|
|
print("✅ TRAITEMENT TERMINÉ") |
|
|
if azure_client: |
|
|
print("🎉 Les 2 étapes ont été appliquées avec succès") |
|
|
else: |
|
|
print("⚠️ Seule l'étape NER a pu être appliquée - configurez Azure OpenAI pour le formatage complet") |
|
|
print("="*80) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("✅ correcteur.py loaded main") |
|
|
main() |