pipeline2 / dataset_optimiser_with_finetunning.py
Nourhenem's picture
initial commit
f92da22 verified
import os
import re
import json
import numpy as np
from typing import List, Dict, Any, Optional, Tuple, Union
from dataclasses import dataclass
from pathlib import Path
# Core libraries
import torch
from transformers import (
AutoTokenizer, AutoModel, AutoModelForTokenClassification,
TrainingArguments, Trainer, pipeline, DataCollatorForTokenClassification
)
from torch.utils.data import Dataset
import torch.nn.functional as F
# Vector database
import chromadb
from chromadb.config import Settings
# Utilities
import logging
from tqdm import tqdm
import pandas as pd
from sklearn.model_selection import train_test_split
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class MedicalEntity:
"""Structure pour les entités médicales extraites par NER"""
exam_types: List[Tuple[str, float]] # (entity, confidence)
specialties: List[Tuple[str, float]]
anatomical_regions: List[Tuple[str, float]]
pathologies: List[Tuple[str, float]]
medical_procedures: List[Tuple[str, float]]
measurements: List[Tuple[str, float]]
medications: List[Tuple[str, float]]
symptoms: List[Tuple[str, float]]
class MedicalNERDataset(Dataset):
"""Dataset personnalisé pour l'entraînement NER médical"""
def __init__(self, texts, labels, tokenizer, max_length=512):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
labels = self.labels[idx]
# Tokenisation
encoding = self.tokenizer(
text,
truncation=True,
padding='max_length',
max_length=self.max_length,
return_offsets_mapping=True,
return_tensors='pt'
)
# Alignement des labels avec les tokens
aligned_labels = self._align_labels_with_tokens(
labels, encoding.offset_mapping.squeeze().tolist()
)
return {
'input_ids': encoding.input_ids.flatten(),
'attention_mask': encoding.attention_mask.flatten(),
'labels': torch.tensor(aligned_labels, dtype=torch.long)
}
def _align_labels_with_tokens(self, labels, offset_mapping):
"""Aligne les labels BIO avec les tokens du tokenizer"""
aligned_labels = []
label_idx = 0
for start, end in offset_mapping:
if start == 0 and end == 0: # Token spécial [CLS], [SEP], [PAD]
aligned_labels.append(-100) # Ignore dans la loss
else:
if label_idx < len(labels):
aligned_labels.append(labels[label_idx])
label_idx += 1
else:
aligned_labels.append(0) # O (Outside)
return aligned_labels
class AdvancedMedicalNER:
"""NER médical avancé basé sur CamemBERT-Bio fine-tuné"""
def __init__(self, model_name: str = "auto", cache_dir: str = "./models_cache"):
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
# Auto-détection du meilleur modèle NER médical disponible
self.model_name = self._select_best_model(model_name)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Labels BIO pour entités médicales
self.entity_labels = [
"O", # Outside
"B-EXAM_TYPES", "I-EXAM_TYPES", # Types d'examens
"B-SPECIALTIES", "I-SPECIALTIES", # Spécialités médicales
"B-ANATOMICAL_REGIONS", "I-ANATOMICAL_REGIONS", # Régions anatomiques
"B-PATHOLOGIES", "I-PATHOLOGIES", # Pathologies
"B-PROCEDURES", "I-PROCEDURES", # Procédures médicales
"B-MEASUREMENTS", "I-MEASUREMENTS", # Mesures/valeurs
"B-MEDICATIONS", "I-MEDICATIONS", # Médicaments
"B-SYMPTOMS", "I-SYMPTOMS" # Symptômes
]
self.id2label = {i: label for i, label in enumerate(self.entity_labels)}
self.label2id = {label: i for i, label in enumerate(self.entity_labels)}
# Chargement du modèle NER
self._load_ner_model()
def _select_best_model(self, model_name: str) -> str:
"""Sélection automatique du meilleur modèle NER médical"""
if model_name != "auto":
return model_name
# Liste des modèles par ordre de préférence
preferred_models = [
"almanach/camembert-bio-base", # CamemBERT Bio français
"Dr-BERT/DrBERT-7GB", # DrBERT spécialisé
"emilyalsentzer/Bio_ClinicalBERT", # Bio Clinical BERT
"microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
"dmis-lab/biobert-base-cased-v1.2", # BioBERT
"camembert-base" # Fallback CamemBERT standard
]
for model in preferred_models:
try:
# Test de disponibilité
AutoTokenizer.from_pretrained(model, cache_dir=self.cache_dir)
logger.info(f"Modèle sélectionné: {model}")
return model
except:
continue
# Fallback ultime
logger.warning("Utilisation du modèle de base camembert-base")
return "camembert-base"
def _load_ner_model(self):
"""Charge ou crée le modèle NER fine-tuné"""
fine_tuned_path = self.cache_dir / "medical_ner_model"
if fine_tuned_path.exists():
logger.info("Chargement du modèle NER fine-tuné existant")
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_path)
self.ner_model = AutoModelForTokenClassification.from_pretrained(fine_tuned_path)
else:
logger.info("Création d'un nouveau modèle NER médical")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, cache_dir=self.cache_dir)
# Modèle pour classification de tokens (NER)
self.ner_model = AutoModelForTokenClassification.from_pretrained(
self.model_name,
num_labels=len(self.entity_labels),
id2label=self.id2label,
label2id=self.label2id,
cache_dir=self.cache_dir
)
self.ner_model.to(self.device)
# Pipeline NER
self.ner_pipeline = pipeline(
"token-classification",
model=self.ner_model,
tokenizer=self.tokenizer,
device=0 if torch.cuda.is_available() else -1,
aggregation_strategy="simple"
)
def extract_entities(self, text: str) -> MedicalEntity:
"""Extraction d'entités avec le modèle NER fine-tuné"""
# Prédiction NER
try:
ner_results = self.ner_pipeline(text)
except Exception as e:
logger.error(f"Erreur NER: {e}")
return MedicalEntity([], [], [], [], [], [], [], [])
# Groupement des entités par type
entities = {
"EXAM_TYPES": [],
"SPECIALTIES": [],
"ANATOMICAL_REGIONS": [],
"PATHOLOGIES": [],
"PROCEDURES": [],
"MEASUREMENTS": [],
"MEDICATIONS": [],
"SYMPTOMS": []
}
for result in ner_results:
entity_type = result['entity_group'].replace('B-', '').replace('I-', '')
entity_text = result['word']
confidence = result['score']
if entity_type in entities and confidence > 0.7: # Seuil de confiance
entities[entity_type].append((entity_text, confidence))
return MedicalEntity(
exam_types=entities["EXAM_TYPES"],
specialties=entities["SPECIALTIES"],
anatomical_regions=entities["ANATOMICAL_REGIONS"],
pathologies=entities["PATHOLOGIES"],
medical_procedures=entities["PROCEDURES"],
measurements=entities["MEASUREMENTS"],
medications=entities["MEDICATIONS"],
symptoms=entities["SYMPTOMS"]
)
def load_dataset(self, dataset_path: str) -> List[Dict]:
"""Charge le dataset depuis le fichier JSON"""
try:
with open(dataset_path, 'r', encoding='utf-8') as f:
# Chaque ligne est un objet JSON séparé
data = []
for line in f:
if line.strip():
data.append(json.loads(line.strip()))
return data
except Exception as e:
logger.error(f"Erreur lors du chargement du dataset: {e}")
return []
"""
def _text_to_bio_labels(self, text: str, entities_dict: Dict[str, List[str]]) -> List[int]:
#Convertit le texte et les entités en labels BI en utilisant les offsets
# Tokenisation du texte
tokens = self.tokenizer.tokenize(text)
labels = [0] * len(tokens) # Initialisation avec "O" (Outside)
# Mapping des types d'entités vers les labels BIO
entity_type_mapping = {
"exam_types": ("B-EXAM_TYPES", "I-EXAM_TYPES"),
"specialties": ("B-SPECIALTIES", "I-SPECIALTIES"),
"anatomical_regions": ("B-ANATOMICAL_REGIONS", "I-ANATOMICAL_REGIONS"),
"pathologies": ("B-PATHOLOGIES", "I-PATHOLOGIES"),
"procedures": ("B-PROCEDURES", "I-PROCEDURES"),
"measurements": ("B-MEASUREMENTS", "I-MEASUREMENTS"),
"medications": ("B-MEDICATIONS", "I-MEDICATIONS"),
"symptoms": ("B-SYMPTOMS", "I-SYMPTOMS")
}
# Attribution des labels pour chaque type d'entité
for entity_type, entity_list in entities_dict.items():
if entity_type in entity_type_mapping and entity_list:
b_label, i_label = entity_type_mapping[entity_type]
b_label_id = self.label2id[b_label]
i_label_id = self.label2id[i_label]
for entity in entity_list:
# Recherche de l'entité dans le texte tokenizé
entity_tokens = self.tokenizer.tokenize(entity.lower())
text_lower = text.lower()
# Recherche de la position de l'entité
start_pos = text_lower.find(entity.lower())
if start_pos != -1:
# Approximation de la position dans les tokens
# (méthode simplifiée - pourrait être améliorée)
char_to_token_ratio = len(tokens) / len(text)
approx_token_start = int(start_pos * char_to_token_ratio)
approx_token_end = min(
len(tokens),
approx_token_start + len(entity_tokens)
)
# Attribution des labels BIO
for i in range(approx_token_start, approx_token_end):
if i < len(labels):
if i == approx_token_start:
labels[i] = b_label_id # B- pour le premier token
else:
labels[i] = i_label_id # I- pour les tokens suivants
return labels
"""
def _text_to_bio_labels(self, text: str, entities_dict: Dict[str, List[str]]) -> List[int]:
"""Convertit le texte et les entités en labels BIO en utilisant les offsets (robuste)"""
# Encodage avec offsets
encoding = self.tokenizer(
text,
return_offsets_mapping=True,
add_special_tokens=False
)
tokens = encoding.tokens()
offsets = encoding["offset_mapping"]
labels = [self.label2id["O"]] * len(tokens) # Initialisation avec "O"
# Mapping des types d'entités vers les labels BIO
entity_type_mapping = {
"exam_types": ("B-EXAM_TYPES", "I-EXAM_TYPES"),
"specialties": ("B-SPECIALTIES", "I-SPECIALTIES"),
"anatomical_regions": ("B-ANATOMICAL_REGIONS", "I-ANATOMICAL_REGIONS"),
"pathologies": ("B-PATHOLOGIES", "I-PATHOLOGIES"),
"procedures": ("B-PROCEDURES", "I-PROCEDURES"),
"measurements": ("B-MEASUREMENTS", "I-MEASUREMENTS"),
"medications": ("B-MEDICATIONS", "I-MEDICATIONS"),
"symptoms": ("B-SYMPTOMS", "I-SYMPTOMS")
}
# Attribution des labels
for entity_type, entity_list in entities_dict.items():
if entity_type in entity_type_mapping and entity_list:
b_label, i_label = entity_type_mapping[entity_type]
b_label_id = self.label2id[b_label]
i_label_id = self.label2id[i_label]
for entity in entity_list:
start_char = text.lower().find(entity.lower())
if start_char == -1:
continue
end_char = start_char + len(entity)
# Trouver tous les tokens qui chevauchent l’entité
entity_token_idxs = [
i for i, (tok_start, tok_end) in enumerate(offsets)
if tok_start < end_char and tok_end > start_char
]
if not entity_token_idxs:
continue
# Attribution BIO
for j, tok_idx in enumerate(entity_token_idxs):
if j == 0:
labels[tok_idx] = b_label_id
else:
labels[tok_idx] = i_label_id
return labels
def _prepare_training_data(self, templates_data: List[Dict]) -> Dict:
"""Prépare les données d'entraînement pour le NER à partir du dataset"""
if not templates_data:
logger.warning("Aucune donnée de template fournie")
return {'train': MedicalNERDataset([], [], self.tokenizer)}
texts = []
labels = []
logger.info(f"Préparation de {len(templates_data)} échantillons pour l'entraînement")
for sample in tqdm(templates_data, desc="Conversion en format BIO"):
try:
text = sample['text']
entities_dict = sample['labels']
# Conversion en labels BIO
bio_labels = self._text_to_bio_labels(text, entities_dict)
texts.append(text)
labels.append(bio_labels)
except Exception as e:
logger.error(f"Erreur lors du traitement d'un échantillon: {e}")
continue
if not texts:
logger.error("Aucun échantillon valide trouvé pour l'entraînement")
return {'train': MedicalNERDataset([], [], self.tokenizer)}
# Division train/validation si suffisamment de données
if len(texts) > 10:
train_texts, val_texts, train_labels, val_labels = train_test_split(
texts, labels, test_size=0.2, random_state=42
)
train_dataset = MedicalNERDataset(train_texts, train_labels, self.tokenizer)
val_dataset = MedicalNERDataset(val_texts, val_labels, self.tokenizer)
logger.info(f"Dataset divisé: {len(train_texts)} train, {len(val_texts)} validation")
return {'train': train_dataset, 'eval': val_dataset}
else:
train_dataset = MedicalNERDataset(texts, labels, self.tokenizer)
logger.info(f"Dataset d'entraînement: {len(texts)} échantillons")
return {'train': train_dataset}
def fine_tune_on_templates(self, templates_data: List[Dict] = None,
dataset_path: str = "dataset.json",
output_dir: str = None,
epochs: int = 3):
"""Fine-tuning du modèle NER sur des templates médicaux"""
if output_dir is None:
output_dir = self.cache_dir / "medical_ner_model"
# Chargement des données
if templates_data is None:
logger.info(f"Chargement du dataset depuis {dataset_path}")
templates_data = self.load_dataset(dataset_path)
if not templates_data:
logger.error("Aucune donnée disponible pour l'entraînement")
return
logger.info("Début du fine-tuning NER sur templates médicaux")
# Préparation des données d'entraînement
datasets = self._prepare_training_data(templates_data)
if len(datasets['train']) == 0:
logger.error("Dataset d'entraînement vide")
return
# Data collator pour gérer le padding
data_collator = DataCollatorForTokenClassification(
tokenizer=self.tokenizer,
padding=True
)
# Configuration d'entraînement
training_args = TrainingArguments(
output_dir=str(output_dir),
num_train_epochs=epochs,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir=f"{output_dir}/logs",
logging_steps=50,
save_strategy="epoch",
evaluation_strategy="epoch" if 'eval' in datasets else "no",
load_best_model_at_end=True if 'eval' in datasets else False,
metric_for_best_model="eval_loss" if 'eval' in datasets else None,
greater_is_better=False,
remove_unused_columns=False,
)
# Fonction de calcul des métriques
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=2)
# Calcul de l'accuracy en ignorant les labels -100
mask = labels != -100
accuracy = (predictions[mask] == labels[mask]).mean()
return {"accuracy": accuracy}
# Trainer
trainer = Trainer(
model=self.ner_model,
args=training_args,
train_dataset=datasets['train'],
eval_dataset=datasets.get('eval'),
tokenizer=self.tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if 'eval' in datasets else None,
)
# Entraînement
logger.info("Début de l'entraînement...")
trainer.train()
# Sauvegarde
trainer.save_model()
self.tokenizer.save_pretrained(output_dir)
# Recharger le modèle et le pipeline
self._load_ner_model()
logger.info(f"Fine-tuning terminé, modèle sauvé dans {output_dir}")
# Affichage des métriques finales si évaluation disponible
if 'eval' in datasets:
eval_results = trainer.evaluate()
logger.info(f"Métriques finales: {eval_results}")
class AdvancedMedicalEmbedding:
"""Générateur d'embeddings médicaux avancés avec cross-encoder reranking"""
def __init__(self,
base_model: str = "almanach/camembert-bio-base",
cross_encoder_model: str = "auto"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.base_model_name = base_model
# Modèle principal pour embeddings
self._load_base_model()
# Cross-encoder pour reranking
self._load_cross_encoder(cross_encoder_model)
def _load_base_model(self):
"""Charge le modèle de base pour les embeddings"""
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_name)
self.base_model = AutoModel.from_pretrained(self.base_model_name)
self.base_model.to(self.device)
logger.info(f"Modèle de base chargé: {self.base_model_name}")
except Exception as e:
logger.error(f"Erreur chargement modèle de base: {e}")
raise
def _load_cross_encoder(self, model_name: str):
"""Charge le cross-encoder pour reranking"""
if model_name == "auto":
# Sélection automatique du meilleur cross-encoder médical
cross_encoders = [
"microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
"emilyalsentzer/Bio_ClinicalBERT",
self.base_model_name # Fallback
]
for model in cross_encoders:
try:
self.cross_tokenizer = AutoTokenizer.from_pretrained(model)
self.cross_model = AutoModel.from_pretrained(model)
self.cross_model.to(self.device)
logger.info(f"Cross-encoder chargé: {model}")
break
except:
continue
else:
self.cross_tokenizer = AutoTokenizer.from_pretrained(model_name)
self.cross_model = AutoModel.from_pretrained(model_name)
self.cross_model.to(self.device)
def generate_embedding(self, text: str, entities: MedicalEntity = None) -> np.ndarray:
"""Génère un embedding enrichi pour un texte médical"""
# Tokenisation
inputs = self.tokenizer(
text,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
# Génération embedding
with torch.no_grad():
outputs = self.base_model(**inputs)
# Mean pooling
attention_mask = inputs['attention_mask']
token_embeddings = outputs.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
embedding = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Enrichissement avec entités NER
if entities:
embedding = self._enrich_with_ner_entities(embedding, entities)
return embedding.cpu().numpy().flatten().astype(np.float32)
def _enrich_with_ner_entities(self, base_embedding: torch.Tensor, entities: MedicalEntity) -> torch.Tensor:
"""Enrichit l'embedding avec les entités extraites par NER"""
# Concaténer les entités importantes avec leurs scores de confiance
entity_texts = []
confidence_weights = []
for entity_list in [entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies]:
for entity_text, confidence in entity_list:
entity_texts.append(entity_text)
confidence_weights.append(confidence)
if not entity_texts:
return base_embedding
# Génération d'embeddings pour les entités
entity_text_combined = " [SEP] ".join(entity_texts)
entity_inputs = self.tokenizer(
entity_text_combined,
padding=True,
truncation=True,
max_length=256,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
entity_outputs = self.base_model(**entity_inputs)
entity_embedding = torch.mean(entity_outputs.last_hidden_state, dim=1)
# Fusion pondérée par les scores de confiance
avg_confidence = np.mean(confidence_weights) if confidence_weights else 0.5
fusion_weight = min(0.4, avg_confidence) # Max 40% pour les entités
enriched_embedding = (1 - fusion_weight) * base_embedding + fusion_weight * entity_embedding
return enriched_embedding
def cross_encoder_rerank(self,
query: str,
candidates: List[Dict],
top_k: int = 3) -> List[Dict]:
"""Reranking avec cross-encoder pour affiner la sélection"""
if len(candidates) <= top_k:
return candidates
reranked_candidates = []
for candidate in candidates:
# Création de la paire query-candidate
pair_text = f"{query} [SEP] {candidate['document']}"
# Tokenisation
inputs = self.cross_tokenizer(
pair_text,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
# Score de similarité cross-encoder
with torch.no_grad():
outputs = self.cross_model(**inputs)
# Utilisation du [CLS] token pour le score de similarité
cls_embedding = outputs.last_hidden_state[:, 0, :]
similarity_score = torch.sigmoid(torch.mean(cls_embedding)).item()
candidate_copy = candidate.copy()
candidate_copy['cross_encoder_score'] = similarity_score
candidate_copy['final_score'] = (
0.6 * candidate['similarity_score'] +
0.4 * similarity_score
)
reranked_candidates.append(candidate_copy)
# Tri par score final
reranked_candidates.sort(key=lambda x: x['final_score'], reverse=True)
return reranked_candidates[:top_k]
class MedicalTemplateVectorDB:
"""Base de données vectorielle optimisée pour templates médicaux"""
def __init__(self, db_path: str = "./medical_vector_db", collection_name: str = "medical_templates"):
self.db_path = db_path
self.collection_name = collection_name
# ChromaDB avec configuration optimisée
self.client = chromadb.PersistentClient(
path=db_path,
settings=Settings(
anonymized_telemetry=False,
allow_reset=True
)
)
# Collection avec métrique de distance optimisée
try:
self.collection = self.client.get_collection(collection_name)
logger.info(f"Collection '{collection_name}' chargée")
except:
self.collection = self.client.create_collection(
name=collection_name,
metadata={
"hnsw:space": "cosine",
"hnsw:M": 32, # Connectivité du graphe
"hnsw:ef_construction": 200, # Qualité vs vitesse construction
"hnsw:ef_search": 50 # Qualité vs vitesse recherche
}
)
logger.info(f"Collection '{collection_name}' créée avec optimisations HNSW")
def add_template(self,
template_id: str,
template_text: str,
embedding: np.ndarray,
entities: MedicalEntity,
metadata: Dict[str, Any] = None):
"""Ajoute un template avec métadonnées enrichies par NER"""
# Métadonnées automatiques basées sur NER
auto_metadata = {
"exam_types": [entity[0] for entity in entities.exam_types],
"specialties": [entity[0] for entity in entities.specialties],
"anatomical_regions": [entity[0] for entity in entities.anatomical_regions],
"pathologies": [entity[0] for entity in entities.pathologies],
"procedures": [entity[0] for entity in entities.medical_procedures],
"text_length": len(template_text),
"entity_confidence_avg": np.mean([
entity[1] for entity_list in [
entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies
] for entity in entity_list
]) if any([entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies]) else 0.0
}
if metadata:
auto_metadata.update(metadata)
self.collection.add(
embeddings=[embedding.tolist()],
documents=[template_text],
metadatas=[auto_metadata],
ids=[template_id]
)
logger.info(f"Template {template_id} ajouté avec métadonnées NER automatiques")
def advanced_search(self,
query_embedding: np.ndarray,
n_results: int = 10,
entity_filters: Dict[str, List[str]] = None,
confidence_threshold: float = 0.0) -> List[Dict]:
"""Recherche avancée avec filtres basés sur entités NER"""
where_clause = {}
# Filtres basés sur entités NER extraites
if entity_filters:
for entity_type, entity_values in entity_filters.items():
if entity_values:
where_clause[entity_type] = {"$in": entity_values}
# Filtre par confiance moyenne des entités
if confidence_threshold > 0:
where_clause["entity_confidence_avg"] = {"$gte": confidence_threshold}
results = self.collection.query(
query_embeddings=[query_embedding.tolist()],
n_results=n_results,
where=where_clause if where_clause else None,
include=["documents", "metadatas", "distances"]
)
# Formatage des résultats
formatted_results = []
for i in range(len(results['ids'][0])):
formatted_results.append({
'id': results['ids'][0][i],
'document': results['documents'][0][i],
'metadata': results['metadatas'][0][i],
'similarity_score': 1 - results['distances'][0][i],
'distance': results['distances'][0][i]
})
return formatted_results
class AdvancedMedicalTemplateProcessor:
"""Processeur avancé avec NER fine-tuné et reranking cross-encoder"""
def __init__(self,
base_model: str = "almanach/camembert-bio-base",
db_path: str = "./advanced_medical_vector_db"):
self.ner_extractor = AdvancedMedicalNER()
self.embedding_generator = AdvancedMedicalEmbedding(base_model)
self.vector_db = MedicalTemplateVectorDB(db_path)
logger.info("Processeur médical avancé initialisé avec NER fine-tuné et cross-encoder reranking")
def process_templates_batch(self,
templates: List[Dict[str, str]] = None,
dataset_path: str = "dataset.json",
batch_size: int = 8,
fine_tune_ner: bool = False) -> None:
"""Traitement avancé avec option de fine-tuning NER"""
# Chargement des données si templates non fournis
if templates is None:
logger.info(f"Chargement des templates depuis {dataset_path}")
templates = self.ner_extractor.load_dataset(dataset_path)
# Conversion du format dataset vers le format attendu
templates = [
{
'id': f"template_{i:04d}",
'text': template['text'],
'metadata': {'labels': template.get('labels', {})}
}
for i, template in enumerate(templates)
]
if fine_tune_ner:
logger.info("Fine-tuning du modèle NER sur les templates...")
# Reconversion pour le fine-tuning
training_data = [
{
'text': template['text'],
'labels': template['metadata'].get('labels', {})
}
for template in templates
]
self.ner_extractor.fine_tune_on_templates(training_data)
logger.info(f"Traitement avancé de {len(templates)} templates")
for i in tqdm(range(0, len(templates), batch_size), desc="Traitement avancé"):
batch = templates[i:i+batch_size]
for template in batch:
try:
template_id = template['id']
template_text = template['text']
metadata = template.get('metadata', {})
# NER avancé
entities = self.ner_extractor.extract_entities(template_text)
# Embedding enrichi
embedding = self.embedding_generator.generate_embedding(template_text, entities)
# Stockage avec métadonnées NER
self.vector_db.add_template(
template_id=template_id,
template_text=template_text,
embedding=embedding,
entities=entities,
metadata=metadata
)
except Exception as e:
logger.error(f"Erreur traitement template {template.get('id', 'unknown')}: {e}")
continue
def find_best_template_with_reranking(self,
transcription: str,
initial_candidates: int = 10,
final_results: int = 3) -> List[Dict]:
"""Recherche optimale avec reranking cross-encoder"""
# 1. Extraction NER de la transcription
query_entities = self.ner_extractor.extract_entities(transcription)
# 2. Génération embedding enrichi
query_embedding = self.embedding_generator.generate_embedding(transcription, query_entities)
# 3. Filtres automatiques basés sur entités extraites
entity_filters = {}
if query_entities.exam_types:
entity_filters['exam_types'] = [entity[0] for entity in query_entities.exam_types]
if query_entities.specialties:
entity_filters['specialties'] = [entity[0] for entity in query_entities.specialties]
if query_entities.anatomical_regions:
entity_filters['anatomical_regions'] = [entity[0] for entity in query_entities.anatomical_regions]
# 4. Recherche vectorielle initiale
initial_candidates_results = self.vector_db.advanced_search(
query_embedding=query_embedding,
n_results=initial_candidates,
entity_filters=entity_filters,
confidence_threshold=0.6
)
# 5. Reranking avec cross-encoder
if len(initial_candidates_results) > final_results:
final_results_reranked = self.embedding_generator.cross_encoder_rerank(
query=transcription,
candidates=initial_candidates_results,
top_k=final_results
)
else:
final_results_reranked = initial_candidates_results
# 6. Enrichissement des résultats avec détails NER
for result in final_results_reranked:
result['query_entities'] = {
'exam_types': query_entities.exam_types,
'specialties': query_entities.specialties,
'anatomical_regions': query_entities.anatomical_regions,
'pathologies': query_entities.pathologies
}
return final_results_reranked
def evaluate_ner_performance(self, test_dataset_path: str = None) -> Dict[str, float]:
"""Évalue les performances du modèle NER fine-tuné"""
if test_dataset_path is None:
logger.warning("Aucun dataset de test fourni pour l'évaluation")
return {}
test_data = self.ner_extractor.load_dataset(test_dataset_path)
if not test_data:
logger.error("Dataset de test vide")
return {}
correct_predictions = 0
total_entities = 0
entity_type_stats = {}
for sample in tqdm(test_data, desc="Évaluation NER"):
text = sample['text']
true_entities = sample['labels']
# Prédiction
predicted_entities = self.ner_extractor.extract_entities(text)
# Conversion en format comparable
predicted_dict = {
'exam_types': [entity[0].lower() for entity in predicted_entities.exam_types],
'specialties': [entity[0].lower() for entity in predicted_entities.specialties],
'anatomical_regions': [entity[0].lower() for entity in predicted_entities.anatomical_regions],
'pathologies': [entity[0].lower() for entity in predicted_entities.pathologies],
'procedures': [entity[0].lower() for entity in predicted_entities.medical_procedures],
'measurements': [entity[0].lower() for entity in predicted_entities.measurements],
'medications': [entity[0].lower() for entity in predicted_entities.medications],
'symptoms': [entity[0].lower() for entity in predicted_entities.symptoms]
}
# Comparaison
for entity_type, true_entities_list in true_entities.items():
if entity_type in predicted_dict:
predicted_entities_list = predicted_dict[entity_type]
# Statistiques par type d'entité
if entity_type not in entity_type_stats:
entity_type_stats[entity_type] = {'correct': 0, 'total': 0}
true_entities_lower = [entity.lower() for entity in true_entities_list]
for true_entity in true_entities_lower:
total_entities += 1
entity_type_stats[entity_type]['total'] += 1
if true_entity in predicted_entities_list:
correct_predictions += 1
entity_type_stats[entity_type]['correct'] += 1
# Calcul des métriques
overall_accuracy = correct_predictions / total_entities if total_entities > 0 else 0
metrics = {
'overall_accuracy': overall_accuracy,
'total_entities': total_entities,
'correct_predictions': correct_predictions
}
# Métriques par type d'entité
for entity_type, stats in entity_type_stats.items():
if stats['total'] > 0:
accuracy = stats['correct'] / stats['total']
metrics[f'{entity_type}_accuracy'] = accuracy
metrics[f'{entity_type}_total'] = stats['total']
logger.info(f"Évaluation NER terminée - Accuracy globale: {overall_accuracy:.4f}")
return metrics
def export_processed_templates(self, output_path: str = "processed_templates.json"):
"""Exporte les templates traités avec leurs embeddings et entités"""
try:
# Récupération de tous les templates de la base vectorielle
all_results = self.vector_db.collection.get(
include=["documents", "metadatas", "embeddings"]
)
processed_templates = []
for i in range(len(all_results['ids'])):
template_data = {
'id': all_results['ids'][i],
'text': all_results['documents'][i],
'metadata': all_results['metadatas'][i],
'embedding': all_results['embeddings'][i] if all_results.get('embeddings') else None
}
processed_templates.append(template_data)
# Sauvegarde
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(processed_templates, f, ensure_ascii=False, indent=2)
logger.info(f"Templates traités exportés vers {output_path}")
logger.info(f"Nombre de templates exportés: {len(processed_templates)}")
except Exception as e:
logger.error(f"Erreur lors de l'export: {e}")
# Utilitaires pour l'analyse et le debugging
class MedicalNERAnalyzer:
"""Outils d'analyse et de debugging pour le système NER médical"""
def __init__(self, processor: AdvancedMedicalTemplateProcessor):
self.processor = processor
def analyze_text(self, text: str) -> Dict:
"""Analyse complète d'un texte médical"""
# Extraction NER
entities = self.processor.ner_extractor.extract_entities(text)
# Génération d'embedding
embedding = self.processor.embedding_generator.generate_embedding(text, entities)
# Statistiques
analysis = {
'text': text,
'text_length': len(text),
'entities': {
'exam_types': entities.exam_types,
'specialties': entities.specialties,
'anatomical_regions': entities.anatomical_regions,
'pathologies': entities.pathologies,
'procedures': entities.medical_procedures,
'measurements': entities.measurements,
'medications': entities.medications,
'symptoms': entities.symptoms
},
'embedding_shape': embedding.shape,
'entity_count_total': sum([
len(entities.exam_types),
len(entities.specialties),
len(entities.anatomical_regions),
len(entities.pathologies),
len(entities.medical_procedures),
len(entities.measurements),
len(entities.medications),
len(entities.symptoms)
]),
'confidence_scores': {
'exam_types': [conf for _, conf in entities.exam_types],
'specialties': [conf for _, conf in entities.specialties],
'anatomical_regions': [conf for _, conf in entities.anatomical_regions],
'pathologies': [conf for _, conf in entities.pathologies]
}
}
return analysis
def compare_entities(self, text1: str, text2: str) -> Dict:
"""Compare les entités extraites de deux textes"""
entities1 = self.processor.ner_extractor.extract_entities(text1)
entities2 = self.processor.ner_extractor.extract_entities(text2)
def entities_to_set(entities):
all_entities = set()
for entity_list in [entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies]:
for entity, _ in entity_list:
all_entities.add(entity.lower())
return all_entities
set1 = entities_to_set(entities1)
set2 = entities_to_set(entities2)
return {
'text1_entities': list(set1),
'text2_entities': list(set2),
'common_entities': list(set1.intersection(set2)),
'unique_to_text1': list(set1.difference(set2)),
'unique_to_text2': list(set2.difference(set1)),
'similarity_ratio': len(set1.intersection(set2)) / len(set1.union(set2)) if set1.union(set2) else 0
}
def generate_entity_report(self, dataset_path: str) -> Dict:
"""Génère un rapport statistique sur les entités du dataset"""
dataset = self.processor.ner_extractor.load_dataset(dataset_path)
entity_stats = {
'exam_types': {},
'specialties': {},
'anatomical_regions': {},
'pathologies': {},
'procedures': {},
'measurements': {},
'medications': {},
'symptoms': {}
}
total_samples = len(dataset)
for sample in tqdm(dataset, desc="Analyse du dataset"):
labels = sample.get('labels', {})
for entity_type, entities in labels.items():
if entity_type in entity_stats:
for entity in entities:
entity_lower = entity.lower()
if entity_lower not in entity_stats[entity_type]:
entity_stats[entity_type][entity_lower] = 0
entity_stats[entity_type][entity_lower] += 1
# Génération du rapport
report = {
'total_samples': total_samples,
'entity_statistics': {}
}
for entity_type, entity_counts in entity_stats.items():
if entity_counts:
sorted_entities = sorted(entity_counts.items(), key=lambda x: x[1], reverse=True)
report['entity_statistics'][entity_type] = {
'unique_count': len(entity_counts),
'total_occurrences': sum(entity_counts.values()),
'top_10': sorted_entities[:10],
'average_occurrences': sum(entity_counts.values()) / len(entity_counts)
}
return report
# Exemple d'utilisation avancée
def main():
"""Exemple d'utilisation du système avancé avec fine-tuning"""
# Initialisation du processeur avancé
processor = AdvancedMedicalTemplateProcessor()
# 1. Traitement des templates avec fine-tuning NER
print("=== ÉTAPE 1: Traitement et Fine-tuning ===")
processor.process_templates_batch(
dataset_path="dataset.json",
fine_tune_ner=True, # Active le fine-tuning
batch_size=8
)
# 2. Évaluation des performances NER (optionnel, si dataset de test disponible)
print("\n=== ÉTAPE 2: Évaluation des performances ===")
# metrics = processor.evaluate_ner_performance("test_dataset.json")
# print(f"Métriques d'évaluation: {metrics}")
# 3. Analyse d'un texte médical
print("\n=== ÉTAPE 3: Analyse de texte ===")
analyzer = MedicalNERAnalyzer(processor)
test_text = """madame bacon nicole bilan œdème droit gonalgies ostéophytes
incontinence veineuse modérée portions surale droite crurale gauche saphéniennes"""
analysis = analyzer.analyze_text(test_text)
print(f"Analyse du texte:")
print(f"- Nombre total d'entités: {analysis['entity_count_total']}")
print(f"- Types d'examens détectés: {analysis['entities']['exam_types']}")
print(f"- Régions anatomiques: {analysis['entities']['anatomical_regions']}")
print(f"- Pathologies: {analysis['entities']['pathologies']}")
# 4. Recherche avec reranking
print("\n=== ÉTAPE 4: Recherche avec reranking ===")
best_matches = processor.find_best_template_with_reranking(
transcription=test_text,
initial_candidates=15,
final_results=3
)
# Affichage des résultats
for i, match in enumerate(best_matches):
print(f"\n--- Match {i+1} ---")
print(f"Template ID: {match['id']}")
print(f"Score final: {match.get('final_score', match['similarity_score']):.4f}")
print(f"Score cross-encoder: {match.get('cross_encoder_score', 'N/A')}")
print(f"Extrait du texte: {match['document'][:200]}...")
# Affichage des entités détectées dans la query
query_entities = match.get('query_entities', {})
for entity_type, entities in query_entities.items():
if entities:
print(f" - {entity_type}: {[f'{e[0]} ({e[1]:.2f})' for e in entities[:3]]}")
# 5. Export des templates traités
print("\n=== ÉTAPE 5: Export des résultats ===")
processor.export_processed_templates("processed_medical_templates.json")
# 6. Génération d'un rapport sur le dataset
print("\n=== ÉTAPE 6: Rapport du dataset ===")
report = analyzer.generate_entity_report("dataset.json")
print(f"Rapport généré pour {report['total_samples']} échantillons")
for entity_type, stats in report['entity_statistics'].items():
if stats['unique_count'] > 0:
print(f"\n{entity_type.upper()}:")
print(f" - Entités uniques: {stats['unique_count']}")
print(f" - Occurrences totales: {stats['total_occurrences']}")
print(f" - Top 3: {stats['top_10'][:3]}")
if __name__ == "__main__":
main()