pipeline2 / testt1.py
Nourhenem's picture
initial commit
f92da22 verified
import os
import random
import spacy
import nltk
from nltk.corpus import wordnet
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from textblob import TextBlob
import requests
import json
from pathlib import Path
import torch
class AdvancedTextAugmenter:
def __init__(self):
self.setup_dependencies()
self.setup_models()
def setup_dependencies(self):
"""Configure les dépendances nécessaires"""
try:
# Télécharge les ressources NLTK nécessaires
nltk.download('wordnet', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('punkt', quiet=True)
# Charge spaCy pour le français
try:
self.nlp = spacy.load("fr_core_news_sm")
except OSError:
print("Modèle spaCy français non trouvé. Installation...")
os.system("python -m spacy download fr_core_news_sm")
self.nlp = spacy.load("fr_core_news_sm")
except Exception as e:
print(f"Erreur lors de la configuration: {e}")
print("Installez les dépendances avec: pip install spacy nltk transformers textblob torch")
def setup_models(self):
"""Configure les modèles de transformation"""
try:
# Paraphraseur basé sur T5
self.paraphraser = pipeline(
"text2text-generation",
model="plguillou/t5-base-fr-sum-cnndm",
tokenizer="plguillou/t5-base-fr-sum-cnndm",
device=0 if torch.cuda.is_available() else -1
)
# Modèle de traduction pour back-translation
self.translator_fr_en = pipeline(
"translation_fr_to_en",
model="Helsinki-NLP/opus-mt-fr-en",
device=0 if torch.cuda.is_available() else -1
)
self.translator_en_fr = pipeline(
"translation_en_to_fr",
model="Helsinki-NLP/opus-mt-en-fr",
device=0 if torch.cuda.is_available() else -1
)
except Exception as e:
print(f"Erreur lors du chargement des modèles: {e}")
print("Utilisation de méthodes alternatives...")
self.paraphraser = None
self.translator_fr_en = None
self.translator_en_fr = None
def get_wordnet_synonyms(self, word, pos_tag):
"""Récupère les synonymes via WordNet"""
synonyms = set()
# Convertit les tags POS de NLTK vers WordNet
wordnet_pos = self.get_wordnet_pos(pos_tag)
if wordnet_pos:
for syn in wordnet.synsets(word, pos=wordnet_pos, lang='fra'):
for lemma in syn.lemmas(lang='fra'):
synonym = lemma.name().replace('_', ' ')
if synonym.lower() != word.lower():
synonyms.add(synonym)
return list(synonyms)
def get_wordnet_pos(self, treebank_tag):
"""Convertit les tags POS vers le format WordNet"""
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return None
def synonym_replacement(self, text, replace_ratio=0.3):
"""Méthode 1: Remplacement par synonymes via WordNet et spaCy - CORRIGÉE"""
doc = self.nlp(text)
result_tokens = []
for token in doc:
# Préserve les espaces avant le token
if token.i > 0:
# Ajoute les espaces entre les tokens
prev_token = doc[token.i - 1]
spaces_between = text[prev_token.idx + len(prev_token.text):token.idx]
result_tokens.append(spaces_between)
if (not token.is_stop and not token.is_punct and
token.pos_ in ['NOUN', 'ADJ', 'VERB', 'ADV'] and
random.random() < replace_ratio):
# Essaie d'abord avec WordNet
synonyms = self.get_wordnet_synonyms(token.lemma_, token.tag_)
if synonyms:
synonym = random.choice(synonyms)
# Préserve la casse
if token.text[0].isupper():
synonym = synonym.capitalize()
result_tokens.append(synonym)
else:
result_tokens.append(token.text)
else:
result_tokens.append(token.text)
# CORRECTION MAJEURE: Simple jointure avec reconstruction propre
return ''.join(result_tokens)
def back_translation(self, text):
"""Méthode 2: Back-translation FR->EN->FR"""
if not self.translator_fr_en or not self.translator_en_fr:
return self.fallback_paraphrase(text)
try:
# Traduit en anglais
english = self.translator_fr_en(text, max_length=512)[0]['translation_text']
# Retraduit en français
back_translated = self.translator_en_fr(english, max_length=512)[0]['translation_text']
return back_translated
except Exception as e:
print(f"Erreur back-translation: {e}")
return self.fallback_paraphrase(text)
def neural_paraphrasing(self, text):
"""Méthode 3: Paraphrase neuronale avec T5"""
if not self.paraphraser:
return self.fallback_paraphrase(text)
try:
# Préfixe pour la paraphrase
input_text = f"paraphrase: {text}"
result = self.paraphraser(
input_text,
max_length=len(text.split()) * 2,
num_return_sequences=1,
temperature=0.8,
do_sample=True
)
return result[0]['generated_text']
except Exception as e:
print(f"Erreur paraphrase neuronale: {e}")
return self.fallback_paraphrase(text)
def fallback_paraphrase(self, text):
"""Méthode de secours utilisant des transformations linguistiques - CORRIGÉE"""
doc = self.nlp(text)
# Réorganise les phrases
sentences = [sent.text.strip() for sent in doc.sents]
paraphrased_sentences = []
for sentence in sentences:
sent_doc = self.nlp(sentence)
# Transformations syntaxiques simples avec préservation des espaces
result_tokens = []
for token in sent_doc:
# Préserve les espaces
if token.i > 0:
prev_token = sent_doc[token.i - 1]
spaces_between = sentence[prev_token.idx + len(prev_token.text):token.idx]
result_tokens.append(spaces_between)
if token.pos_ == 'ADP': # Prépositions
prep_alternatives = {
'dans': 'à travers', 'sur': 'au-dessus de',
'avec': 'en compagnie de', 'pour': 'en faveur de'
}
result_tokens.append(prep_alternatives.get(token.text.lower(), token.text))
else:
result_tokens.append(token.text)
paraphrased_sentences.append(''.join(result_tokens))
return ' '.join(paraphrased_sentences)
def contextual_word_insertion(self, text, insert_ratio=0.1):
"""Méthode 4: Insertion contextuelle de mots - CORRIGÉE"""
doc = self.nlp(text)
result = ""
adverb_intensifiers = ['vraiment', 'particulièrement', 'extrêmement', 'assez', 'plutôt']
conjunctions = ['également', 'aussi', 'de plus', 'par ailleurs']
for i, token in enumerate(doc):
# Ajoute les espaces avant le token si nécessaire
if token.i > 0:
prev_token = doc[token.i - 1]
spaces_between = text[prev_token.idx + len(prev_token.text):token.idx]
result += spaces_between
# Insert adverbs before adjectives
if (token.pos_ == 'ADJ' and random.random() < insert_ratio):
result += random.choice(adverb_intensifiers) + " "
result += token.text
# Insert conjunctions at sentence boundaries
if (token.text in ['.', '!', '?'] and i < len(doc) - 1 and
random.random() < insert_ratio):
result += " " + random.choice(conjunctions) + ","
return result
def process_single_file(self, file_path, output_counter):
"""Traite un seul fichier et génère ses variations"""
try:
with open(file_path, 'r', encoding='utf-8') as f:
original_text = f.read().strip()
if not original_text:
return output_counter
print(f"Traitement de: {file_path.name}")
# Génère la première variation: Synonymes + insertion contextuelle
print(" → Génération variation 1 (synonymes + insertion)...")
variation_1 = self.synonym_replacement(original_text)
variation_1 = self.contextual_word_insertion(variation_1)
# Génère la deuxième variation: Back-translation OU paraphrase neuronale
print(" → Génération variation 2 (back-translation/paraphrase)...")
if random.choice([True, False]):
variation_2 = self.back_translation(original_text)
else:
variation_2 = self.neural_paraphrasing(original_text)
# Sauvegarde les variations
output_file_1 = f"template{output_counter}.txt"
with open(output_file_1, 'w', encoding='utf-8') as f:
f.write(variation_1)
output_file_2 = f"template{output_counter + 1}.txt"
with open(output_file_2, 'w', encoding='utf-8') as f:
f.write(variation_2)
print(f" ✓ Créé: {output_file_1}, {output_file_2}")
return output_counter + 2
except Exception as e:
print(f"Erreur lors du traitement de {file_path}: {e}")
return output_counter
def augment_dataset(self, input_directory=".", output_prefix="template", start_number=419):
"""Traite tous les fichiers texte du répertoire"""
print("=== AUGMENTATION AVANCÉE DE DONNÉES TEXTUELLES ===\n")
# Trouve tous les fichiers .txt
text_files = sorted(list(Path(input_directory).glob("*.txt")))
if not text_files:
print("❌ Aucun fichier .txt trouvé dans le répertoire.")
return
print(f"📁 Trouvé {len(text_files)} fichiers à traiter...")
print(f"🚀 Démarrage de la génération à partir de {output_prefix}{start_number}.txt\n")
output_counter = start_number
processed_files = 0
for file_path in text_files:
output_counter = self.process_single_file(file_path, output_counter)
processed_files += 1
if processed_files % 50 == 0:
print(f"📊 Progression: {processed_files}/{len(text_files)} fichiers traités\n")
total_generated = output_counter - start_number
print(f"\n🎉 TERMINÉ!")
print(f"📈 Statistiques:")
print(f" • Fichiers originaux: {len(text_files)}")
print(f" • Nouveaux fichiers générés: {total_generated}")
print(f" • Total final: {len(text_files) + total_generated}")
print(f" • Facteur de multiplication: x{(len(text_files) + total_generated) / len(text_files):.1f}")
# Installation automatique des dépendances
def install_dependencies():
"""Installe les dépendances nécessaires"""
import subprocess
import sys
packages = [
"spacy", "nltk", "transformers", "textblob", "torch", "sentencepiece"
]
for package in packages:
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
except:
print(f"Impossible d'installer {package}")
# Utilisation
if __name__ == "__main__":
print("Vérification des dépendances...")
try:
augmenter = AdvancedTextAugmenter()
# Lance l'augmentation
augmenter.augment_dataset(
input_directory="data_txt", # Répertoire courant
output_prefix="template",
start_number=419
)
except ImportError as e:
print(f"Dépendances manquantes: {e}")
print("Installation automatique...")
install_dependencies()
print("Relancez le script après l'installation.")