Corregido proveedor NTIA para conectar al Space correcto
Browse files
app.py
CHANGED
|
@@ -853,33 +853,91 @@ def generate_video(prompt, model_name, num_frames=16, num_inference_steps=20):
|
|
| 853 |
# Configuración específica por tipo de modelo
|
| 854 |
if "zeroscope" in model_name.lower():
|
| 855 |
# Zeroscope models
|
| 856 |
-
|
| 857 |
prompt,
|
| 858 |
num_inference_steps=num_inference_steps,
|
| 859 |
num_frames=num_frames,
|
| 860 |
height=256,
|
| 861 |
width=256
|
| 862 |
-
)
|
| 863 |
elif "animatediff" in model_name.lower():
|
| 864 |
# AnimateDiff models
|
| 865 |
-
|
| 866 |
prompt,
|
| 867 |
num_inference_steps=num_inference_steps,
|
| 868 |
num_frames=num_frames
|
| 869 |
-
)
|
| 870 |
else:
|
| 871 |
# Text-to-video models (default)
|
| 872 |
-
|
| 873 |
prompt,
|
| 874 |
num_inference_steps=num_inference_steps,
|
| 875 |
num_frames=num_frames
|
| 876 |
-
)
|
| 877 |
|
| 878 |
print("Video generado exitosamente")
|
| 879 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 880 |
|
| 881 |
except Exception as e:
|
| 882 |
print(f"Error generando video: {str(e)}")
|
|
|
|
|
|
|
|
|
|
| 883 |
return f"Error generando video: {str(e)}"
|
| 884 |
|
| 885 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
|
@@ -948,21 +1006,52 @@ def generate_video_with_info(prompt, model_name, optimization_level="balanced",
|
|
| 948 |
else:
|
| 949 |
return video_frames
|
| 950 |
else:
|
| 951 |
-
# Si es un tensor numpy, convertirlo a
|
| 952 |
if hasattr(video_frames, 'shape'):
|
| 953 |
-
# Es un tensor, convertirlo a formato compatible
|
| 954 |
import numpy as np
|
| 955 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 956 |
# Tomar el primer batch
|
| 957 |
frames = video_frames[0]
|
| 958 |
-
return
|
| 959 |
else:
|
| 960 |
-
|
|
|
|
| 961 |
else:
|
| 962 |
return video_frames
|
| 963 |
|
| 964 |
except Exception as e:
|
| 965 |
print(f"Error generando video: {str(e)}")
|
|
|
|
|
|
|
|
|
|
| 966 |
return f"Error generando video: {str(e)}"
|
| 967 |
|
| 968 |
def chat_with_model(message, history, model_name):
|
|
|
|
| 853 |
# Configuración específica por tipo de modelo
|
| 854 |
if "zeroscope" in model_name.lower():
|
| 855 |
# Zeroscope models
|
| 856 |
+
result = pipeline(
|
| 857 |
prompt,
|
| 858 |
num_inference_steps=num_inference_steps,
|
| 859 |
num_frames=num_frames,
|
| 860 |
height=256,
|
| 861 |
width=256
|
| 862 |
+
)
|
| 863 |
elif "animatediff" in model_name.lower():
|
| 864 |
# AnimateDiff models
|
| 865 |
+
result = pipeline(
|
| 866 |
prompt,
|
| 867 |
num_inference_steps=num_inference_steps,
|
| 868 |
num_frames=num_frames
|
| 869 |
+
)
|
| 870 |
else:
|
| 871 |
# Text-to-video models (default)
|
| 872 |
+
result = pipeline(
|
| 873 |
prompt,
|
| 874 |
num_inference_steps=num_inference_steps,
|
| 875 |
num_frames=num_frames
|
| 876 |
+
)
|
| 877 |
|
| 878 |
print("Video generado exitosamente")
|
| 879 |
+
|
| 880 |
+
# Manejar diferentes tipos de respuesta
|
| 881 |
+
if hasattr(result, 'frames'):
|
| 882 |
+
video_frames = result.frames
|
| 883 |
+
elif hasattr(result, 'videos'):
|
| 884 |
+
video_frames = result.videos
|
| 885 |
+
else:
|
| 886 |
+
video_frames = result
|
| 887 |
+
|
| 888 |
+
# Convertir a formato compatible con Gradio
|
| 889 |
+
if isinstance(video_frames, list):
|
| 890 |
+
if len(video_frames) == 1:
|
| 891 |
+
return video_frames[0]
|
| 892 |
+
else:
|
| 893 |
+
return video_frames
|
| 894 |
+
else:
|
| 895 |
+
# Si es un tensor numpy, convertirlo a formato de video
|
| 896 |
+
if hasattr(video_frames, 'shape'):
|
| 897 |
+
import numpy as np
|
| 898 |
+
print(f"Forma del video: {video_frames.shape}")
|
| 899 |
+
|
| 900 |
+
# Convertir a formato de video compatible con Gradio
|
| 901 |
+
if len(video_frames.shape) == 4: # (frames, height, width, channels)
|
| 902 |
+
# Convertir frames a formato de video
|
| 903 |
+
frames_list = []
|
| 904 |
+
for i in range(video_frames.shape[0]):
|
| 905 |
+
frame = video_frames[i]
|
| 906 |
+
# Asegurar que el frame esté en el rango correcto (0-255)
|
| 907 |
+
if frame.dtype == np.float32 or frame.dtype == np.float16:
|
| 908 |
+
frame = (frame * 255).astype(np.uint8)
|
| 909 |
+
frames_list.append(frame)
|
| 910 |
+
|
| 911 |
+
# Crear video a partir de frames
|
| 912 |
+
import imageio
|
| 913 |
+
import tempfile
|
| 914 |
+
import os
|
| 915 |
+
|
| 916 |
+
# Crear archivo temporal
|
| 917 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 918 |
+
temp_path = tmp_file.name
|
| 919 |
+
|
| 920 |
+
# Guardar frames como video
|
| 921 |
+
imageio.mimsave(temp_path, frames_list, fps=8)
|
| 922 |
+
|
| 923 |
+
print(f"Video guardado en: {temp_path}")
|
| 924 |
+
return temp_path
|
| 925 |
+
|
| 926 |
+
elif len(video_frames.shape) == 5: # (batch, frames, height, width, channels)
|
| 927 |
+
# Tomar el primer batch
|
| 928 |
+
frames = video_frames[0]
|
| 929 |
+
return generate_video(prompt, model_name, num_frames, num_inference_steps)
|
| 930 |
+
else:
|
| 931 |
+
print(f"Forma no reconocida: {video_frames.shape}")
|
| 932 |
+
return None
|
| 933 |
+
else:
|
| 934 |
+
return video_frames
|
| 935 |
|
| 936 |
except Exception as e:
|
| 937 |
print(f"Error generando video: {str(e)}")
|
| 938 |
+
print(f"Tipo de error: {type(e).__name__}")
|
| 939 |
+
import traceback
|
| 940 |
+
traceback.print_exc()
|
| 941 |
return f"Error generando video: {str(e)}"
|
| 942 |
|
| 943 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
|
|
|
| 1006 |
else:
|
| 1007 |
return video_frames
|
| 1008 |
else:
|
| 1009 |
+
# Si es un tensor numpy, convertirlo a formato de video
|
| 1010 |
if hasattr(video_frames, 'shape'):
|
|
|
|
| 1011 |
import numpy as np
|
| 1012 |
+
print(f"Forma del video: {video_frames.shape}")
|
| 1013 |
+
|
| 1014 |
+
# Convertir a formato de video compatible con Gradio
|
| 1015 |
+
if len(video_frames.shape) == 4: # (frames, height, width, channels)
|
| 1016 |
+
# Convertir frames a formato de video
|
| 1017 |
+
frames_list = []
|
| 1018 |
+
for i in range(video_frames.shape[0]):
|
| 1019 |
+
frame = video_frames[i]
|
| 1020 |
+
# Asegurar que el frame esté en el rango correcto (0-255)
|
| 1021 |
+
if frame.dtype == np.float32 or frame.dtype == np.float16:
|
| 1022 |
+
frame = (frame * 255).astype(np.uint8)
|
| 1023 |
+
frames_list.append(frame)
|
| 1024 |
+
|
| 1025 |
+
# Crear video a partir de frames
|
| 1026 |
+
import imageio
|
| 1027 |
+
import tempfile
|
| 1028 |
+
import os
|
| 1029 |
+
|
| 1030 |
+
# Crear archivo temporal
|
| 1031 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 1032 |
+
temp_path = tmp_file.name
|
| 1033 |
+
|
| 1034 |
+
# Guardar frames como video
|
| 1035 |
+
imageio.mimsave(temp_path, frames_list, fps=8)
|
| 1036 |
+
|
| 1037 |
+
print(f"Video guardado en: {temp_path}")
|
| 1038 |
+
return temp_path
|
| 1039 |
+
|
| 1040 |
+
elif len(video_frames.shape) == 5: # (batch, frames, height, width, channels)
|
| 1041 |
# Tomar el primer batch
|
| 1042 |
frames = video_frames[0]
|
| 1043 |
+
return generate_video_with_info(prompt, model_name, optimization_level, input_image)
|
| 1044 |
else:
|
| 1045 |
+
print(f"Forma no reconocida: {video_frames.shape}")
|
| 1046 |
+
return None
|
| 1047 |
else:
|
| 1048 |
return video_frames
|
| 1049 |
|
| 1050 |
except Exception as e:
|
| 1051 |
print(f"Error generando video: {str(e)}")
|
| 1052 |
+
print(f"Tipo de error: {type(e).__name__}")
|
| 1053 |
+
import traceback
|
| 1054 |
+
traceback.print_exc()
|
| 1055 |
return f"Error generando video: {str(e)}"
|
| 1056 |
|
| 1057 |
def chat_with_model(message, history, model_name):
|