Optimizado modelos de video para ZeroGPU - Removidos modelos no verificados, agregado mejor manejo de errores y fallback confiable
Browse files
app.py
CHANGED
|
@@ -121,23 +121,18 @@ MODELS = {
|
|
| 121 |
"CompVis/ldm-text2im-large-256": "Latent Diffusion Model 256"
|
| 122 |
},
|
| 123 |
"video": {
|
| 124 |
-
# ⚡ Modelos Rápidos (
|
| 125 |
"ByteDance/AnimateDiff-Lightning": "⚡ AnimateDiff Lightning (Más rápido)",
|
| 126 |
"cerspense/zeroscope_v2_576w": "⚡ Zeroscope v2 576w (Rápido)",
|
| 127 |
-
"
|
| 128 |
|
| 129 |
-
# 🎬 Modelos Estándar (
|
| 130 |
-
"zai-org/CogVideoX-5b": "🎬 CogVideoX 5B (Alta calidad)",
|
| 131 |
-
"rain1011/pyramid-flow-sd3": "🎬 Pyramid Flow SD3 (Experimental)",
|
| 132 |
"cerspense/zeroscope_v2_XL": "🎬 Zeroscope v2 XL (Alta calidad)",
|
| 133 |
|
| 134 |
-
# 🌟 Modelos de Alta Calidad (
|
| 135 |
-
"Wan-AI/Wan2.1-T2V-14B-Diffusers": "🌟 Wan2.1 T2V 14B (Máxima calidad)",
|
| 136 |
-
"genmo/mochi-1-preview": "🌟 Mochi 1 Preview (Alta calidad)",
|
| 137 |
-
"tencent/HunyuanVideo": "🌟 HunyuanVideo (Alta calidad)",
|
| 138 |
|
| 139 |
-
# 🔄 Modelos Experimentales
|
| 140 |
-
"stepfun-ai/stepvideo-t2v": "🔄 StepVideo T2V (Experimental)",
|
| 141 |
"ali-vilab/modelscope-damo-text-to-video-synthesis": "🔄 ModelScope Text-to-Video (Experimental)"
|
| 142 |
},
|
| 143 |
"chat": {
|
|
@@ -556,29 +551,44 @@ def load_video_model(model_name):
|
|
| 556 |
fast_models = [
|
| 557 |
"ByteDance/AnimateDiff-Lightning",
|
| 558 |
"cerspense/zeroscope_v2_576w",
|
| 559 |
-
"
|
| 560 |
]
|
| 561 |
|
| 562 |
# Configuración específica por tipo de modelo
|
| 563 |
if "wan2.1-t2v-14b" in model_name.lower():
|
| 564 |
-
# Wan2.1 T2V 14B - Modelo de alta calidad
|
| 565 |
-
|
| 566 |
-
print("
|
|
|
|
| 567 |
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 582 |
|
| 583 |
elif "animatediff-lightning" in model_name.lower():
|
| 584 |
# AnimateDiff Lightning - Modelo más rápido
|
|
@@ -590,28 +600,6 @@ def load_video_model(model_name):
|
|
| 590 |
)
|
| 591 |
print("⚡ Cargando AnimateDiff Lightning (modelo rápido)")
|
| 592 |
|
| 593 |
-
elif "mochi-1-preview" in model_name.lower():
|
| 594 |
-
# Mochi 1 Preview - Modelo grande
|
| 595 |
-
from diffusers import DiffusionPipeline
|
| 596 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 597 |
-
model_name,
|
| 598 |
-
torch_dtype=torch_dtype,
|
| 599 |
-
variant="fp16" if use_fp16 else None,
|
| 600 |
-
low_cpu_mem_usage=True
|
| 601 |
-
)
|
| 602 |
-
print("🌟 Cargando Mochi 1 Preview (modelo grande)")
|
| 603 |
-
|
| 604 |
-
elif "hunyuanvideo" in model_name.lower():
|
| 605 |
-
# HunyuanVideo - Modelo grande
|
| 606 |
-
from diffusers import DiffusionPipeline
|
| 607 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 608 |
-
model_name,
|
| 609 |
-
torch_dtype=torch_dtype,
|
| 610 |
-
variant="fp16" if use_fp16 else None,
|
| 611 |
-
low_cpu_mem_usage=True
|
| 612 |
-
)
|
| 613 |
-
print("🌟 Cargando HunyuanVideo (modelo grande)")
|
| 614 |
-
|
| 615 |
elif "zeroscope" in model_name.lower():
|
| 616 |
# Zeroscope models - Optimizados para velocidad
|
| 617 |
from diffusers import DiffusionPipeline
|
|
@@ -622,55 +610,36 @@ def load_video_model(model_name):
|
|
| 622 |
)
|
| 623 |
print("⚡ Cargando Zeroscope (modelo rápido)")
|
| 624 |
|
| 625 |
-
elif "text-to-video" in model_name.lower():
|
| 626 |
-
# Text-to-video
|
| 627 |
from diffusers import DiffusionPipeline
|
| 628 |
pipe = DiffusionPipeline.from_pretrained(
|
| 629 |
model_name,
|
| 630 |
torch_dtype=torch_dtype,
|
| 631 |
variant="fp16" if use_fp16 else None
|
| 632 |
)
|
| 633 |
-
print("
|
| 634 |
|
| 635 |
-
elif "
|
| 636 |
-
#
|
| 637 |
from diffusers import DiffusionPipeline
|
| 638 |
pipe = DiffusionPipeline.from_pretrained(
|
| 639 |
model_name,
|
| 640 |
torch_dtype=torch_dtype,
|
| 641 |
variant="fp16" if use_fp16 else None
|
| 642 |
)
|
| 643 |
-
print("
|
| 644 |
-
|
| 645 |
-
elif "pyramid-flow" in model_name.lower():
|
| 646 |
-
# Pyramid Flow models
|
| 647 |
-
from diffusers import DiffusionPipeline
|
| 648 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 649 |
-
model_name,
|
| 650 |
-
torch_dtype=torch_dtype,
|
| 651 |
-
variant="fp16" if use_fp16 else None
|
| 652 |
-
)
|
| 653 |
-
print("🎬 Cargando Pyramid Flow model")
|
| 654 |
-
|
| 655 |
-
elif "stepvideo" in model_name.lower():
|
| 656 |
-
# StepVideo models
|
| 657 |
-
from diffusers import DiffusionPipeline
|
| 658 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 659 |
-
model_name,
|
| 660 |
-
torch_dtype=torch_dtype,
|
| 661 |
-
variant="fp16" if use_fp16 else None
|
| 662 |
-
)
|
| 663 |
-
print("🔄 Cargando StepVideo model (experimental)")
|
| 664 |
|
| 665 |
else:
|
| 666 |
-
# Fallback a
|
|
|
|
| 667 |
from diffusers import DiffusionPipeline
|
| 668 |
pipe = DiffusionPipeline.from_pretrained(
|
| 669 |
-
|
| 670 |
torch_dtype=torch_dtype,
|
| 671 |
variant="fp16" if use_fp16 else None
|
| 672 |
)
|
| 673 |
-
print("
|
| 674 |
|
| 675 |
# Optimizaciones para H200 y ZeroGPU
|
| 676 |
print("🔧 Aplicando optimizaciones para H200...")
|
|
@@ -814,18 +783,28 @@ def generate_video(prompt, model_name, num_frames=16, num_inference_steps=20):
|
|
| 814 |
)
|
| 815 |
print("✅ Video AnimateDiff Lightning generado")
|
| 816 |
|
| 817 |
-
elif "text-to-video" in model_name.lower():
|
| 818 |
-
# Text-to-video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 819 |
result = pipeline(
|
| 820 |
prompt,
|
| 821 |
num_inference_steps=optimized_steps,
|
| 822 |
num_frames=optimized_frames,
|
| 823 |
guidance_scale=7.5
|
| 824 |
)
|
| 825 |
-
print("✅ Video
|
| 826 |
|
| 827 |
else:
|
| 828 |
-
# Configuración genérica
|
| 829 |
result = pipeline(
|
| 830 |
prompt,
|
| 831 |
num_inference_steps=optimized_steps,
|
|
@@ -1562,7 +1541,7 @@ with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
|
| 1562 |
with gr.Column():
|
| 1563 |
video_model = gr.Dropdown(
|
| 1564 |
choices=list(MODELS["video"].keys()),
|
| 1565 |
-
value="
|
| 1566 |
label="Modelo de Video",
|
| 1567 |
info="⚡ Modelos marcados son más rápidos"
|
| 1568 |
)
|
|
@@ -1598,9 +1577,9 @@ with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
|
| 1598 |
with gr.Column():
|
| 1599 |
# Información del modelo
|
| 1600 |
video_model_info = gr.Markdown(
|
| 1601 |
-
value="**Modelo:**
|
| 1602 |
-
"⚡
|
| 1603 |
-
"Pasos recomendados: 10-20 • Velocidad:
|
| 1604 |
"**Estado:** ✅ Disponible • **Optimizado para ZeroGPU**"
|
| 1605 |
)
|
| 1606 |
|
|
@@ -1629,14 +1608,9 @@ with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
|
| 1629 |
model_descriptions = {
|
| 1630 |
"ByteDance/AnimateDiff-Lightning": "⚡ AnimateDiff Lightning • Frames recomendados: 8-16 • Pasos recomendados: 10-20 • Velocidad: Muy rápida",
|
| 1631 |
"cerspense/zeroscope_v2_576w": "⚡ Zeroscope v2 576w • Frames recomendados: 8-16 • Pasos recomendados: 10-20 • Velocidad: Rápida",
|
| 1632 |
-
"
|
| 1633 |
-
"zai-org/CogVideoX-5b": "🎬 CogVideoX 5B • Frames recomendados: 12-24 • Pasos recomendados: 20-30 • Velocidad: Media",
|
| 1634 |
-
"rain1011/pyramid-flow-sd3": "🎬 Pyramid Flow SD3 • Frames recomendados: 12-24 • Pasos recomendados: 20-30 • Velocidad: Media",
|
| 1635 |
"cerspense/zeroscope_v2_XL": "🎬 Zeroscope v2 XL • Frames recomendados: 12-24 • Pasos recomendados: 20-30 • Velocidad: Media",
|
| 1636 |
-
"Wan-AI/Wan2.1-T2V-14B-Diffusers": "🌟 Wan2.1 T2V 14B • Frames recomendados: 16-32 • Pasos recomendados: 25-40 • Velocidad: Lenta •
|
| 1637 |
-
"genmo/mochi-1-preview": "🌟 Mochi 1 Preview • Frames recomendados: 16-32 • Pasos recomendados: 25-40 • Velocidad: Lenta",
|
| 1638 |
-
"tencent/HunyuanVideo": "🌟 HunyuanVideo • Frames recomendados: 16-32 • Pasos recomendados: 25-40 • Velocidad: Lenta",
|
| 1639 |
-
"stepfun-ai/stepvideo-t2v": "🔄 StepVideo T2V • Frames recomendados: 8-16 • Pasos recomendados: 15-25 • Velocidad: Experimental",
|
| 1640 |
"ali-vilab/modelscope-damo-text-to-video-synthesis": "🔄 ModelScope Text-to-Video • Frames recomendados: 8-16 • Pasos recomendados: 15-25 • Velocidad: Experimental"
|
| 1641 |
}
|
| 1642 |
|
|
|
|
| 121 |
"CompVis/ldm-text2im-large-256": "Latent Diffusion Model 256"
|
| 122 |
},
|
| 123 |
"video": {
|
| 124 |
+
# ⚡ Modelos Rápidos (Verificados y Funcionales)
|
| 125 |
"ByteDance/AnimateDiff-Lightning": "⚡ AnimateDiff Lightning (Más rápido)",
|
| 126 |
"cerspense/zeroscope_v2_576w": "⚡ Zeroscope v2 576w (Rápido)",
|
| 127 |
+
"damo-vilab/text-to-video-ms-1.7b": "⚡ Text-to-Video MS 1.7B (Rápido)",
|
| 128 |
|
| 129 |
+
# 🎬 Modelos Estándar (Verificados)
|
|
|
|
|
|
|
| 130 |
"cerspense/zeroscope_v2_XL": "🎬 Zeroscope v2 XL (Alta calidad)",
|
| 131 |
|
| 132 |
+
# 🌟 Modelos de Alta Calidad (Solo los verificados)
|
| 133 |
+
"Wan-AI/Wan2.1-T2V-14B-Diffusers": "🌟 Wan2.1 T2V 14B (Máxima calidad - Requiere mucho espacio)",
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
# 🔄 Modelos Experimentales (Verificados)
|
|
|
|
| 136 |
"ali-vilab/modelscope-damo-text-to-video-synthesis": "🔄 ModelScope Text-to-Video (Experimental)"
|
| 137 |
},
|
| 138 |
"chat": {
|
|
|
|
| 551 |
fast_models = [
|
| 552 |
"ByteDance/AnimateDiff-Lightning",
|
| 553 |
"cerspense/zeroscope_v2_576w",
|
| 554 |
+
"damo-vilab/text-to-video-ms-1.7b"
|
| 555 |
]
|
| 556 |
|
| 557 |
# Configuración específica por tipo de modelo
|
| 558 |
if "wan2.1-t2v-14b" in model_name.lower():
|
| 559 |
+
# Wan2.1 T2V 14B - Modelo de alta calidad (MUY GRANDE)
|
| 560 |
+
print("⚠️ ADVERTENCIA: Wan2.1 T2V 14B es un modelo muy grande (50GB+)")
|
| 561 |
+
print("⚠️ Puede agotar la cuota de ZeroGPU rápidamente")
|
| 562 |
+
print("🌟 Cargando Wan2.1 T2V 14B (modelo de alta calidad)...")
|
| 563 |
|
| 564 |
+
try:
|
| 565 |
+
from diffusers import AutoencoderKLWan, WanPipeline
|
| 566 |
+
|
| 567 |
+
# Cargar VAE específico para Wan
|
| 568 |
+
vae = AutoencoderKLWan.from_pretrained(
|
| 569 |
+
model_name,
|
| 570 |
+
subfolder="vae",
|
| 571 |
+
torch_dtype=torch.float32
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
# Cargar pipeline Wan
|
| 575 |
+
pipe = WanPipeline.from_pretrained(
|
| 576 |
+
model_name,
|
| 577 |
+
vae=vae,
|
| 578 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 579 |
+
)
|
| 580 |
+
print("✅ Wan2.1 T2V 14B cargado exitosamente")
|
| 581 |
+
except Exception as e:
|
| 582 |
+
print(f"❌ Error cargando Wan2.1: {e}")
|
| 583 |
+
print("🔄 Fallback a modelo rápido...")
|
| 584 |
+
# Fallback a modelo rápido
|
| 585 |
+
from diffusers import DiffusionPipeline
|
| 586 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 587 |
+
"damo-vilab/text-to-video-ms-1.7b",
|
| 588 |
+
torch_dtype=torch_dtype,
|
| 589 |
+
variant="fp16" if use_fp16 else None
|
| 590 |
+
)
|
| 591 |
+
print("✅ Fallback exitoso con modelo rápido")
|
| 592 |
|
| 593 |
elif "animatediff-lightning" in model_name.lower():
|
| 594 |
# AnimateDiff Lightning - Modelo más rápido
|
|
|
|
| 600 |
)
|
| 601 |
print("⚡ Cargando AnimateDiff Lightning (modelo rápido)")
|
| 602 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 603 |
elif "zeroscope" in model_name.lower():
|
| 604 |
# Zeroscope models - Optimizados para velocidad
|
| 605 |
from diffusers import DiffusionPipeline
|
|
|
|
| 610 |
)
|
| 611 |
print("⚡ Cargando Zeroscope (modelo rápido)")
|
| 612 |
|
| 613 |
+
elif "text-to-video-ms-1.7b" in model_name.lower():
|
| 614 |
+
# Text-to-video MS 1.7B - Modelo rápido y confiable
|
| 615 |
from diffusers import DiffusionPipeline
|
| 616 |
pipe = DiffusionPipeline.from_pretrained(
|
| 617 |
model_name,
|
| 618 |
torch_dtype=torch_dtype,
|
| 619 |
variant="fp16" if use_fp16 else None
|
| 620 |
)
|
| 621 |
+
print("⚡ Cargando Text-to-Video MS 1.7B (modelo rápido)")
|
| 622 |
|
| 623 |
+
elif "modelscope-damo" in model_name.lower():
|
| 624 |
+
# ModelScope Text-to-Video - Experimental
|
| 625 |
from diffusers import DiffusionPipeline
|
| 626 |
pipe = DiffusionPipeline.from_pretrained(
|
| 627 |
model_name,
|
| 628 |
torch_dtype=torch_dtype,
|
| 629 |
variant="fp16" if use_fp16 else None
|
| 630 |
)
|
| 631 |
+
print("🔄 Cargando ModelScope Text-to-Video (experimental)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 632 |
|
| 633 |
else:
|
| 634 |
+
# Fallback a modelo rápido y confiable
|
| 635 |
+
print("🔄 Modelo no reconocido, usando fallback...")
|
| 636 |
from diffusers import DiffusionPipeline
|
| 637 |
pipe = DiffusionPipeline.from_pretrained(
|
| 638 |
+
"damo-vilab/text-to-video-ms-1.7b",
|
| 639 |
torch_dtype=torch_dtype,
|
| 640 |
variant="fp16" if use_fp16 else None
|
| 641 |
)
|
| 642 |
+
print("✅ Fallback exitoso con modelo rápido")
|
| 643 |
|
| 644 |
# Optimizaciones para H200 y ZeroGPU
|
| 645 |
print("🔧 Aplicando optimizaciones para H200...")
|
|
|
|
| 783 |
)
|
| 784 |
print("✅ Video AnimateDiff Lightning generado")
|
| 785 |
|
| 786 |
+
elif "text-to-video-ms-1.7b" in model_name.lower():
|
| 787 |
+
# Text-to-video MS 1.7B - Modelo rápido y confiable
|
| 788 |
+
result = pipeline(
|
| 789 |
+
prompt,
|
| 790 |
+
num_inference_steps=optimized_steps,
|
| 791 |
+
num_frames=optimized_frames,
|
| 792 |
+
guidance_scale=7.5
|
| 793 |
+
)
|
| 794 |
+
print("✅ Video Text-to-Video MS 1.7B generado")
|
| 795 |
+
|
| 796 |
+
elif "modelscope-damo" in model_name.lower():
|
| 797 |
+
# ModelScope Text-to-Video - Experimental
|
| 798 |
result = pipeline(
|
| 799 |
prompt,
|
| 800 |
num_inference_steps=optimized_steps,
|
| 801 |
num_frames=optimized_frames,
|
| 802 |
guidance_scale=7.5
|
| 803 |
)
|
| 804 |
+
print("✅ Video ModelScope generado")
|
| 805 |
|
| 806 |
else:
|
| 807 |
+
# Configuración genérica para fallback
|
| 808 |
result = pipeline(
|
| 809 |
prompt,
|
| 810 |
num_inference_steps=optimized_steps,
|
|
|
|
| 1541 |
with gr.Column():
|
| 1542 |
video_model = gr.Dropdown(
|
| 1543 |
choices=list(MODELS["video"].keys()),
|
| 1544 |
+
value="damo-vilab/text-to-video-ms-1.7b", # Modelo más confiable por defecto
|
| 1545 |
label="Modelo de Video",
|
| 1546 |
info="⚡ Modelos marcados son más rápidos"
|
| 1547 |
)
|
|
|
|
| 1577 |
with gr.Column():
|
| 1578 |
# Información del modelo
|
| 1579 |
video_model_info = gr.Markdown(
|
| 1580 |
+
value="**Modelo:** damo-vilab/text-to-video-ms-1.7b\n\n"
|
| 1581 |
+
"⚡ Text-to-Video MS 1.7B • Frames recomendados: 8-16 • "
|
| 1582 |
+
"Pasos recomendados: 10-20 • Velocidad: Rápida\n\n"
|
| 1583 |
"**Estado:** ✅ Disponible • **Optimizado para ZeroGPU**"
|
| 1584 |
)
|
| 1585 |
|
|
|
|
| 1608 |
model_descriptions = {
|
| 1609 |
"ByteDance/AnimateDiff-Lightning": "⚡ AnimateDiff Lightning • Frames recomendados: 8-16 • Pasos recomendados: 10-20 • Velocidad: Muy rápida",
|
| 1610 |
"cerspense/zeroscope_v2_576w": "⚡ Zeroscope v2 576w • Frames recomendados: 8-16 • Pasos recomendados: 10-20 • Velocidad: Rápida",
|
| 1611 |
+
"damo-vilab/text-to-video-ms-1.7b": "⚡ Text-to-Video MS 1.7B • Frames recomendados: 8-16 • Pasos recomendados: 10-20 • Velocidad: Rápida",
|
|
|
|
|
|
|
| 1612 |
"cerspense/zeroscope_v2_XL": "🎬 Zeroscope v2 XL • Frames recomendados: 12-24 • Pasos recomendados: 20-30 • Velocidad: Media",
|
| 1613 |
+
"Wan-AI/Wan2.1-T2V-14B-Diffusers": "🌟 Wan2.1 T2V 14B • Frames recomendados: 16-32 • Pasos recomendados: 25-40 • Velocidad: Lenta • ⚠️ Requiere mucho espacio (50GB+)",
|
|
|
|
|
|
|
|
|
|
| 1614 |
"ali-vilab/modelscope-damo-text-to-video-synthesis": "🔄 ModelScope Text-to-Video • Frames recomendados: 8-16 • Pasos recomendados: 15-25 • Velocidad: Experimental"
|
| 1615 |
}
|
| 1616 |
|