fix: FLUX model configuration and add sentencepiece dependency
Browse files- app.py +81 -54
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -113,12 +113,12 @@ def load_text_model(model_name):
|
|
| 113 |
print(f"Cargando modelo de texto: {model_name}")
|
| 114 |
|
| 115 |
try:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
elif "flan-t5" in model_name.lower():
|
| 124 |
# Modelo Flan-T5
|
|
@@ -144,13 +144,13 @@ def load_text_model(model_name):
|
|
| 144 |
if tokenizer.pad_token is None:
|
| 145 |
tokenizer.pad_token = tokenizer.eos_token
|
| 146 |
|
| 147 |
-
|
| 148 |
# Modelo de generación de texto estándar
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
tokenizer.pad_token = tokenizer.eos_token
|
| 155 |
model.config.pad_token_id = model.config.eos_token_id
|
| 156 |
|
|
@@ -165,14 +165,14 @@ def load_text_model(model_name):
|
|
| 165 |
# Fallback a un modelo básico
|
| 166 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 167 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
|
| 177 |
return model_cache[model_name]
|
| 178 |
|
|
@@ -186,15 +186,23 @@ def load_image_model(model_name):
|
|
| 186 |
if "flux" in model_name.lower():
|
| 187 |
try:
|
| 188 |
from diffusers import FluxPipeline
|
|
|
|
| 189 |
pipe = FluxPipeline.from_pretrained(
|
| 190 |
model_name,
|
| 191 |
torch_dtype=torch.bfloat16,
|
| 192 |
use_auth_token=HF_TOKEN if HF_TOKEN else None
|
| 193 |
)
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
except Exception as e:
|
| 196 |
-
print(f"Error cargando FLUX: {e}")
|
| 197 |
# Fallback a Stable Diffusion
|
|
|
|
| 198 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 199 |
"CompVis/stable-diffusion-v1-4",
|
| 200 |
torch_dtype=torch.float32,
|
|
@@ -248,13 +256,16 @@ def load_image_model(model_name):
|
|
| 248 |
# Optimizaciones básicas de memoria
|
| 249 |
pipe.enable_attention_slicing()
|
| 250 |
if hasattr(pipe, 'enable_model_cpu_offload'):
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
model_cache[model_name] = {
|
| 254 |
"pipeline": pipe,
|
| 255 |
"type": "image"
|
| 256 |
}
|
| 257 |
-
|
| 258 |
except Exception as e:
|
| 259 |
print(f"Error general cargando modelo de imagen {model_name}: {e}")
|
| 260 |
# Fallback final a SD 1.4
|
|
@@ -287,16 +298,16 @@ def load_video_model(model_name):
|
|
| 287 |
# Modelos de texto a video
|
| 288 |
from diffusers import DiffusionPipeline
|
| 289 |
pipe = DiffusionPipeline.from_pretrained(
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
elif "modelscope" in model_name.lower():
|
| 295 |
# ModelScope models
|
| 296 |
-
|
| 297 |
-
|
| 298 |
model_name,
|
| 299 |
-
|
| 300 |
)
|
| 301 |
elif "zeroscope" in model_name.lower():
|
| 302 |
# Zeroscope models
|
|
@@ -307,25 +318,25 @@ def load_video_model(model_name):
|
|
| 307 |
)
|
| 308 |
elif "animatediff" in model_name.lower():
|
| 309 |
# AnimateDiff models
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
elif "cogvideo" in model_name.lower():
|
| 316 |
# CogVideo models
|
| 317 |
-
|
| 318 |
-
|
| 319 |
model_name,
|
| 320 |
-
|
| 321 |
-
|
| 322 |
elif "pyramid-flow" in model_name.lower():
|
| 323 |
# Pyramid Flow models
|
| 324 |
-
|
| 325 |
-
|
| 326 |
model_name,
|
| 327 |
-
|
| 328 |
-
|
| 329 |
else:
|
| 330 |
# Fallback a text-to-video genérico
|
| 331 |
from diffusers import DiffusionPipeline
|
|
@@ -402,7 +413,7 @@ def generate_text(prompt, model_name, max_length=100):
|
|
| 402 |
response = response.replace(prompt, "").strip()
|
| 403 |
|
| 404 |
return response
|
| 405 |
-
|
| 406 |
except Exception as e:
|
| 407 |
return f"Error generando texto: {str(e)}"
|
| 408 |
|
|
@@ -413,17 +424,33 @@ def generate_image(prompt, model_name, num_inference_steps=20):
|
|
| 413 |
print(f"Prompt: {prompt}")
|
| 414 |
print(f"Pasos: {num_inference_steps}")
|
| 415 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
model_data = load_image_model(model_name)
|
| 417 |
pipeline = model_data["pipeline"]
|
| 418 |
|
| 419 |
# Configuración específica para FLUX
|
| 420 |
if "flux" in model_name.lower():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
image = pipeline(
|
| 422 |
prompt,
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
|
|
|
|
|
|
| 427 |
).images[0]
|
| 428 |
else:
|
| 429 |
# Configuración básica para otros modelos
|
|
@@ -431,11 +458,11 @@ def generate_image(prompt, model_name, num_inference_steps=20):
|
|
| 431 |
prompt,
|
| 432 |
num_inference_steps=num_inference_steps,
|
| 433 |
guidance_scale=7.5
|
| 434 |
-
|
| 435 |
|
| 436 |
print("Imagen generada exitosamente")
|
| 437 |
return image
|
| 438 |
-
|
| 439 |
except Exception as e:
|
| 440 |
print(f"Error generando imagen: {str(e)}")
|
| 441 |
return f"Error generando imagen: {str(e)}"
|
|
@@ -478,7 +505,7 @@ def generate_video(prompt, model_name, num_frames=16, num_inference_steps=20):
|
|
| 478 |
|
| 479 |
print("Video generado exitosamente")
|
| 480 |
return video_frames
|
| 481 |
-
|
| 482 |
except Exception as e:
|
| 483 |
print(f"Error generando video: {str(e)}")
|
| 484 |
return f"Error generando video: {str(e)}"
|
|
@@ -522,7 +549,7 @@ def chat_with_model(message, history, model_name):
|
|
| 522 |
history.append({"role": "assistant", "content": response})
|
| 523 |
|
| 524 |
return history
|
| 525 |
-
|
| 526 |
except Exception as e:
|
| 527 |
error_msg = f"Error en el chat: {str(e)}"
|
| 528 |
history.append({"role": "user", "content": message})
|
|
@@ -705,7 +732,7 @@ with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
|
| 705 |
label="Video Generado",
|
| 706 |
format="mp4"
|
| 707 |
)
|
| 708 |
-
|
| 709 |
video_btn.click(
|
| 710 |
generate_video,
|
| 711 |
inputs=[video_prompt, video_model, num_frames, video_steps],
|
|
|
|
| 113 |
print(f"Cargando modelo de texto: {model_name}")
|
| 114 |
|
| 115 |
try:
|
| 116 |
+
# Detectar tipo de modelo
|
| 117 |
+
if "opus-mt" in model_name.lower():
|
| 118 |
+
# Modelo de traducción
|
| 119 |
+
from transformers import MarianMTModel, MarianTokenizer
|
| 120 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 121 |
+
model = MarianMTModel.from_pretrained(model_name)
|
| 122 |
|
| 123 |
elif "flan-t5" in model_name.lower():
|
| 124 |
# Modelo Flan-T5
|
|
|
|
| 144 |
if tokenizer.pad_token is None:
|
| 145 |
tokenizer.pad_token = tokenizer.eos_token
|
| 146 |
|
| 147 |
+
else:
|
| 148 |
# Modelo de generación de texto estándar
|
| 149 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 150 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 151 |
+
|
| 152 |
+
# Configurar para chat si es DialoGPT
|
| 153 |
+
if "dialogpt" in model_name.lower():
|
| 154 |
tokenizer.pad_token = tokenizer.eos_token
|
| 155 |
model.config.pad_token_id = model.config.eos_token_id
|
| 156 |
|
|
|
|
| 165 |
# Fallback a un modelo básico
|
| 166 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 167 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 168 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 169 |
+
model.config.pad_token_id = model.config.eos_token_id
|
| 170 |
+
|
| 171 |
+
model_cache[model_name] = {
|
| 172 |
+
"tokenizer": tokenizer,
|
| 173 |
+
"model": model,
|
| 174 |
+
"type": "text"
|
| 175 |
+
}
|
| 176 |
|
| 177 |
return model_cache[model_name]
|
| 178 |
|
|
|
|
| 186 |
if "flux" in model_name.lower():
|
| 187 |
try:
|
| 188 |
from diffusers import FluxPipeline
|
| 189 |
+
print("🚀 Cargando FLUX Pipeline...")
|
| 190 |
pipe = FluxPipeline.from_pretrained(
|
| 191 |
model_name,
|
| 192 |
torch_dtype=torch.bfloat16,
|
| 193 |
use_auth_token=HF_TOKEN if HF_TOKEN else None
|
| 194 |
)
|
| 195 |
+
# Solo usar enable_model_cpu_offload si hay acelerador disponible
|
| 196 |
+
try:
|
| 197 |
+
pipe.enable_model_cpu_offload()
|
| 198 |
+
print("✅ FLUX con CPU offload habilitado")
|
| 199 |
+
except Exception as offload_error:
|
| 200 |
+
print(f"⚠️ No se pudo habilitar CPU offload: {offload_error}")
|
| 201 |
+
print("✅ FLUX cargado sin CPU offload")
|
| 202 |
except Exception as e:
|
| 203 |
+
print(f"❌ Error cargando FLUX: {e}")
|
| 204 |
# Fallback a Stable Diffusion
|
| 205 |
+
print("🔄 Fallback a Stable Diffusion...")
|
| 206 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 207 |
"CompVis/stable-diffusion-v1-4",
|
| 208 |
torch_dtype=torch.float32,
|
|
|
|
| 256 |
# Optimizaciones básicas de memoria
|
| 257 |
pipe.enable_attention_slicing()
|
| 258 |
if hasattr(pipe, 'enable_model_cpu_offload'):
|
| 259 |
+
try:
|
| 260 |
+
pipe.enable_model_cpu_offload()
|
| 261 |
+
except Exception as e:
|
| 262 |
+
print(f"⚠️ No se pudo habilitar CPU offload: {e}")
|
| 263 |
|
| 264 |
model_cache[model_name] = {
|
| 265 |
"pipeline": pipe,
|
| 266 |
"type": "image"
|
| 267 |
}
|
| 268 |
+
|
| 269 |
except Exception as e:
|
| 270 |
print(f"Error general cargando modelo de imagen {model_name}: {e}")
|
| 271 |
# Fallback final a SD 1.4
|
|
|
|
| 298 |
# Modelos de texto a video
|
| 299 |
from diffusers import DiffusionPipeline
|
| 300 |
pipe = DiffusionPipeline.from_pretrained(
|
| 301 |
+
model_name,
|
| 302 |
+
torch_dtype=torch.float32,
|
| 303 |
+
variant="fp16"
|
| 304 |
+
)
|
| 305 |
elif "modelscope" in model_name.lower():
|
| 306 |
# ModelScope models
|
| 307 |
+
from diffusers import DiffusionPipeline
|
| 308 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 309 |
model_name,
|
| 310 |
+
torch_dtype=torch.float32
|
| 311 |
)
|
| 312 |
elif "zeroscope" in model_name.lower():
|
| 313 |
# Zeroscope models
|
|
|
|
| 318 |
)
|
| 319 |
elif "animatediff" in model_name.lower():
|
| 320 |
# AnimateDiff models
|
| 321 |
+
from diffusers import DiffusionPipeline
|
| 322 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 323 |
+
model_name,
|
| 324 |
+
torch_dtype=torch.float32
|
| 325 |
+
)
|
| 326 |
elif "cogvideo" in model_name.lower():
|
| 327 |
# CogVideo models
|
| 328 |
+
from diffusers import DiffusionPipeline
|
| 329 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 330 |
model_name,
|
| 331 |
+
torch_dtype=torch.float32
|
| 332 |
+
)
|
| 333 |
elif "pyramid-flow" in model_name.lower():
|
| 334 |
# Pyramid Flow models
|
| 335 |
+
from diffusers import DiffusionPipeline
|
| 336 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 337 |
model_name,
|
| 338 |
+
torch_dtype=torch.float32
|
| 339 |
+
)
|
| 340 |
else:
|
| 341 |
# Fallback a text-to-video genérico
|
| 342 |
from diffusers import DiffusionPipeline
|
|
|
|
| 413 |
response = response.replace(prompt, "").strip()
|
| 414 |
|
| 415 |
return response
|
| 416 |
+
|
| 417 |
except Exception as e:
|
| 418 |
return f"Error generando texto: {str(e)}"
|
| 419 |
|
|
|
|
| 424 |
print(f"Prompt: {prompt}")
|
| 425 |
print(f"Pasos: {num_inference_steps}")
|
| 426 |
|
| 427 |
+
# Convertir num_inference_steps a entero si es string
|
| 428 |
+
if isinstance(num_inference_steps, str):
|
| 429 |
+
try:
|
| 430 |
+
num_inference_steps = int(num_inference_steps)
|
| 431 |
+
except ValueError:
|
| 432 |
+
num_inference_steps = 20
|
| 433 |
+
print(f"⚠️ No se pudo convertir '{num_inference_steps}' a entero, usando 20")
|
| 434 |
+
|
| 435 |
model_data = load_image_model(model_name)
|
| 436 |
pipeline = model_data["pipeline"]
|
| 437 |
|
| 438 |
# Configuración específica para FLUX
|
| 439 |
if "flux" in model_name.lower():
|
| 440 |
+
import random
|
| 441 |
+
# Generar un seed aleatorio para cada imagen
|
| 442 |
+
random_seed = random.randint(0, 999999)
|
| 443 |
+
print(f"🎲 Usando seed aleatorio para FLUX: {random_seed}")
|
| 444 |
+
print(f"🔧 Parámetros FLUX: guidance_scale=3.5, steps=50, max_seq=512")
|
| 445 |
+
|
| 446 |
image = pipeline(
|
| 447 |
prompt,
|
| 448 |
+
height=1024,
|
| 449 |
+
width=1024,
|
| 450 |
+
guidance_scale=3.5, # ✅ Valor recomendado por la documentación
|
| 451 |
+
num_inference_steps=50, # ✅ Valor recomendado por la documentación
|
| 452 |
+
max_sequence_length=512, # ✅ Valor recomendado por la documentación
|
| 453 |
+
generator=torch.Generator("cpu").manual_seed(random_seed) # ✅ Seed aleatorio
|
| 454 |
).images[0]
|
| 455 |
else:
|
| 456 |
# Configuración básica para otros modelos
|
|
|
|
| 458 |
prompt,
|
| 459 |
num_inference_steps=num_inference_steps,
|
| 460 |
guidance_scale=7.5
|
| 461 |
+
).images[0]
|
| 462 |
|
| 463 |
print("Imagen generada exitosamente")
|
| 464 |
return image
|
| 465 |
+
|
| 466 |
except Exception as e:
|
| 467 |
print(f"Error generando imagen: {str(e)}")
|
| 468 |
return f"Error generando imagen: {str(e)}"
|
|
|
|
| 505 |
|
| 506 |
print("Video generado exitosamente")
|
| 507 |
return video_frames
|
| 508 |
+
|
| 509 |
except Exception as e:
|
| 510 |
print(f"Error generando video: {str(e)}")
|
| 511 |
return f"Error generando video: {str(e)}"
|
|
|
|
| 549 |
history.append({"role": "assistant", "content": response})
|
| 550 |
|
| 551 |
return history
|
| 552 |
+
|
| 553 |
except Exception as e:
|
| 554 |
error_msg = f"Error en el chat: {str(e)}"
|
| 555 |
history.append({"role": "user", "content": message})
|
|
|
|
| 732 |
label="Video Generado",
|
| 733 |
format="mp4"
|
| 734 |
)
|
| 735 |
+
|
| 736 |
video_btn.click(
|
| 737 |
generate_video,
|
| 738 |
inputs=[video_prompt, video_model, num_frames, video_steps],
|
requirements.txt
CHANGED
|
@@ -14,4 +14,5 @@ imageio>=2.31.0
|
|
| 14 |
imageio-ffmpeg>=0.4.8
|
| 15 |
fastapi>=0.104.0
|
| 16 |
uvicorn>=0.24.0
|
| 17 |
-
pydantic>=2.0.0
|
|
|
|
|
|
| 14 |
imageio-ffmpeg>=0.4.8
|
| 15 |
fastapi>=0.104.0
|
| 16 |
uvicorn>=0.24.0
|
| 17 |
+
pydantic>=2.0.0
|
| 18 |
+
sentencepiece>=0.1.99
|