Mejora configuración FLUX: autenticación, manejo de errores y optimización de memoria
Browse files- README.md +23 -1
- app.py +121 -20
- check_config.py +107 -0
README.md
CHANGED
|
@@ -46,7 +46,29 @@ git push
|
|
| 46 |
|
| 47 |
### Variables de Entorno
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
### Dependencias
|
| 52 |
|
|
|
|
| 46 |
|
| 47 |
### Variables de Entorno
|
| 48 |
|
| 49 |
+
Para usar modelos gated como **FLUX.1-dev** y **FLUX.1-schnell**, necesitas configurar:
|
| 50 |
+
|
| 51 |
+
#### 1. Obtener Token de Hugging Face
|
| 52 |
+
1. Ve a [Hugging Face Settings](https://huggingface.co/settings/tokens)
|
| 53 |
+
2. Crea un nuevo token con permisos de **read**
|
| 54 |
+
3. Copia el token generado
|
| 55 |
+
|
| 56 |
+
#### 2. Configurar Token en el Space
|
| 57 |
+
1. Ve a tu Space: https://huggingface.co/spaces/Ntdeseb/ntia
|
| 58 |
+
2. Haz clic en **Settings** (⚙️)
|
| 59 |
+
3. En la sección **Variables and secrets**
|
| 60 |
+
4. Agrega una nueva variable:
|
| 61 |
+
- **Name**: `HF_TOKEN`
|
| 62 |
+
- **Value**: `hf_tu_token_aqui`
|
| 63 |
+
- **Type**: `Secret` ✅
|
| 64 |
+
5. Guarda los cambios
|
| 65 |
+
6. Reinicia el Space
|
| 66 |
+
|
| 67 |
+
#### 3. Verificar Acceso a Modelos FLUX
|
| 68 |
+
1. Ve a [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
|
| 69 |
+
2. Haz clic en **Access** para solicitar acceso
|
| 70 |
+
3. Acepta los términos de licencia
|
| 71 |
+
4. Repite para [FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell)
|
| 72 |
|
| 73 |
### Dependencias
|
| 74 |
|
app.py
CHANGED
|
@@ -18,10 +18,47 @@ if HF_TOKEN:
|
|
| 18 |
try:
|
| 19 |
login(token=HF_TOKEN)
|
| 20 |
print("✅ Autenticado con Hugging Face")
|
|
|
|
| 21 |
except Exception as e:
|
| 22 |
print(f"⚠️ Error de autenticación: {e}")
|
| 23 |
else:
|
| 24 |
print("⚠️ No se encontró HF_TOKEN - modelos gated no estarán disponibles")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
# Clases para los endpoints API
|
| 27 |
class TextRequest(BaseModel):
|
|
@@ -192,29 +229,66 @@ def load_image_model(model_name):
|
|
| 192 |
try:
|
| 193 |
# Configuración especial para FLUX
|
| 194 |
if "flux" in model_name.lower():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
try:
|
| 196 |
from diffusers import FluxPipeline
|
| 197 |
print("🚀 Cargando FLUX Pipeline...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
pipe = FluxPipeline.from_pretrained(
|
| 199 |
model_name,
|
| 200 |
-
torch_dtype=torch.float32, # ✅
|
| 201 |
-
use_auth_token=HF_TOKEN
|
|
|
|
|
|
|
| 202 |
)
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
try:
|
| 205 |
pipe.enable_model_cpu_offload()
|
| 206 |
-
print("✅
|
| 207 |
except Exception as offload_error:
|
| 208 |
print(f"⚠️ No se pudo habilitar CPU offload: {offload_error}")
|
| 209 |
-
print("✅ FLUX
|
| 210 |
|
| 211 |
-
|
| 212 |
-
pipe.enable_attention_slicing()
|
| 213 |
-
pipe.enable_vae_slicing()
|
| 214 |
-
print("✅ Optimizaciones de memoria aplicadas a FLUX")
|
| 215 |
|
| 216 |
except Exception as e:
|
| 217 |
print(f"❌ Error cargando FLUX: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
# Fallback a Stable Diffusion
|
| 219 |
print("🔄 Fallback a Stable Diffusion...")
|
| 220 |
pipe = StableDiffusionPipeline.from_pretrained(
|
|
@@ -495,18 +569,45 @@ def generate_image(prompt, model_name, num_inference_steps=20):
|
|
| 495 |
# Generar un seed aleatorio para cada imagen
|
| 496 |
random_seed = random.randint(0, 999999)
|
| 497 |
print(f"🎲 Usando seed aleatorio para FLUX: {random_seed}")
|
| 498 |
-
print(f"🔧 Parámetros FLUX OPTIMIZADOS: guidance_scale=3.5, steps=
|
| 499 |
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
|
| 511 |
# Configuración específica para modelos Turbo (rápidos)
|
| 512 |
elif any(turbo_model in model_name.lower() for turbo_model in ["sdxl-turbo", "sd-turbo", "sdxl-lightning"]):
|
|
|
|
| 18 |
try:
|
| 19 |
login(token=HF_TOKEN)
|
| 20 |
print("✅ Autenticado con Hugging Face")
|
| 21 |
+
print(f"🔑 Token configurado: {HF_TOKEN[:10]}...{HF_TOKEN[-10:] if len(HF_TOKEN) > 20 else '***'}")
|
| 22 |
except Exception as e:
|
| 23 |
print(f"⚠️ Error de autenticación: {e}")
|
| 24 |
else:
|
| 25 |
print("⚠️ No se encontró HF_TOKEN - modelos gated no estarán disponibles")
|
| 26 |
+
print("💡 Para usar modelos FLUX, configura la variable de entorno HF_TOKEN en el Space")
|
| 27 |
+
|
| 28 |
+
# Verificar acceso a modelos gated
|
| 29 |
+
def check_gated_model_access():
|
| 30 |
+
"""Verificar si tenemos acceso a modelos gated"""
|
| 31 |
+
if not HF_TOKEN:
|
| 32 |
+
return False
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
# Intentar acceder a un modelo gated para verificar permisos
|
| 36 |
+
from huggingface_hub import model_info
|
| 37 |
+
info = model_info("black-forest-labs/FLUX.1-dev", token=HF_TOKEN)
|
| 38 |
+
print(f"✅ Acceso verificado a FLUX.1-dev: {info.modelId}")
|
| 39 |
+
return True
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(f"❌ No se pudo verificar acceso a modelos gated: {e}")
|
| 42 |
+
return False
|
| 43 |
+
|
| 44 |
+
# Verificar acceso al inicio
|
| 45 |
+
GATED_ACCESS = check_gated_model_access()
|
| 46 |
+
|
| 47 |
+
# Mostrar estado de configuración al inicio
|
| 48 |
+
print("=" * 60)
|
| 49 |
+
print("🚀 SPACE NTIA - ESTADO DE CONFIGURACIÓN")
|
| 50 |
+
print("=" * 60)
|
| 51 |
+
print(f"🔑 Token HF configurado: {'✅' if HF_TOKEN else '❌'}")
|
| 52 |
+
print(f"🔐 Acceso a modelos gated: {'✅' if GATED_ACCESS else '❌'}")
|
| 53 |
+
print(f"🎨 Modelos FLUX disponibles: {'✅' if GATED_ACCESS else '❌'}")
|
| 54 |
+
print("=" * 60)
|
| 55 |
+
|
| 56 |
+
if not GATED_ACCESS:
|
| 57 |
+
print("⚠️ Para usar modelos FLUX:")
|
| 58 |
+
print(" 1. Configura HF_TOKEN en las variables de entorno del Space")
|
| 59 |
+
print(" 2. Solicita acceso a los modelos FLUX en Hugging Face")
|
| 60 |
+
print(" 3. Acepta los términos de licencia")
|
| 61 |
+
print("=" * 60)
|
| 62 |
|
| 63 |
# Clases para los endpoints API
|
| 64 |
class TextRequest(BaseModel):
|
|
|
|
| 229 |
try:
|
| 230 |
# Configuración especial para FLUX
|
| 231 |
if "flux" in model_name.lower():
|
| 232 |
+
if not GATED_ACCESS:
|
| 233 |
+
print("❌ No hay acceso a modelos gated. Configura HF_TOKEN en el Space.")
|
| 234 |
+
raise Exception("Acceso denegado a modelos FLUX. Configura HF_TOKEN en las variables de entorno del Space.")
|
| 235 |
+
|
| 236 |
try:
|
| 237 |
from diffusers import FluxPipeline
|
| 238 |
print("🚀 Cargando FLUX Pipeline...")
|
| 239 |
+
print(f"🔧 Modelo: {model_name}")
|
| 240 |
+
print(f"🔑 Usando token de autenticación: {'Sí' if HF_TOKEN else 'No'}")
|
| 241 |
+
|
| 242 |
+
# Configuración optimizada para Spaces
|
| 243 |
pipe = FluxPipeline.from_pretrained(
|
| 244 |
model_name,
|
| 245 |
+
torch_dtype=torch.float32, # ✅ Usar float32 para ahorrar memoria
|
| 246 |
+
use_auth_token=HF_TOKEN,
|
| 247 |
+
device_map="auto", # ✅ Distribuir automáticamente en GPU/CPU
|
| 248 |
+
low_cpu_mem_usage=True # ✅ Reducir uso de memoria CPU
|
| 249 |
)
|
| 250 |
+
|
| 251 |
+
print("✅ FLUX Pipeline cargado exitosamente")
|
| 252 |
+
|
| 253 |
+
# Optimizaciones de memoria solo si están disponibles
|
| 254 |
+
try:
|
| 255 |
+
pipe.enable_attention_slicing()
|
| 256 |
+
print("✅ Attention slicing habilitado")
|
| 257 |
+
except Exception as e:
|
| 258 |
+
print(f"⚠️ No se pudo habilitar attention slicing: {e}")
|
| 259 |
+
|
| 260 |
+
try:
|
| 261 |
+
pipe.enable_vae_slicing()
|
| 262 |
+
print("✅ VAE slicing habilitado")
|
| 263 |
+
except Exception as e:
|
| 264 |
+
print(f"⚠️ No se pudo habilitar VAE slicing: {e}")
|
| 265 |
+
|
| 266 |
+
# CPU offload solo si hay suficiente memoria
|
| 267 |
try:
|
| 268 |
pipe.enable_model_cpu_offload()
|
| 269 |
+
print("✅ CPU offload habilitado")
|
| 270 |
except Exception as offload_error:
|
| 271 |
print(f"⚠️ No se pudo habilitar CPU offload: {offload_error}")
|
| 272 |
+
print("✅ FLUX funcionará sin CPU offload")
|
| 273 |
|
| 274 |
+
print("✅ FLUX completamente configurado y listo")
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
except Exception as e:
|
| 277 |
print(f"❌ Error cargando FLUX: {e}")
|
| 278 |
+
print(f"🔍 Tipo de error: {type(e).__name__}")
|
| 279 |
+
|
| 280 |
+
# Si es un error de autenticación, dar instrucciones específicas
|
| 281 |
+
if "401" in str(e) or "unauthorized" in str(e).lower():
|
| 282 |
+
print("🔐 Error de autenticación. Asegúrate de:")
|
| 283 |
+
print(" 1. Tener acceso al modelo FLUX en Hugging Face")
|
| 284 |
+
print(" 2. Configurar HF_TOKEN en las variables de entorno del Space")
|
| 285 |
+
print(" 3. Que el token tenga permisos para acceder a modelos gated")
|
| 286 |
+
|
| 287 |
+
# Si es un error de memoria, sugerir optimizaciones
|
| 288 |
+
elif "out of memory" in str(e).lower() or "cuda" in str(e).lower():
|
| 289 |
+
print("💾 Error de memoria. El modelo FLUX requiere mucha memoria.")
|
| 290 |
+
print(" Considera usar un Space con más GPU o usar FLUX.1-schnell en su lugar.")
|
| 291 |
+
|
| 292 |
# Fallback a Stable Diffusion
|
| 293 |
print("🔄 Fallback a Stable Diffusion...")
|
| 294 |
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
|
| 569 |
# Generar un seed aleatorio para cada imagen
|
| 570 |
random_seed = random.randint(0, 999999)
|
| 571 |
print(f"🎲 Usando seed aleatorio para FLUX: {random_seed}")
|
| 572 |
+
print(f"🔧 Parámetros FLUX OPTIMIZADOS: guidance_scale=3.5, steps=15, max_seq=256, height=512")
|
| 573 |
|
| 574 |
+
try:
|
| 575 |
+
# Parámetros optimizados para reducir memoria y tiempo
|
| 576 |
+
image = pipeline(
|
| 577 |
+
prompt,
|
| 578 |
+
height=512, # ✅ Reducido de 1024 a 512 para ahorrar memoria
|
| 579 |
+
width=512, # ✅ Reducido de 1024 a 512 para ahorrar memoria
|
| 580 |
+
guidance_scale=3.5, # ✅ Valor recomendado por la documentación
|
| 581 |
+
num_inference_steps=15, # ✅ Reducido de 25 a 15 para ahorrar tiempo
|
| 582 |
+
max_sequence_length=256, # ✅ Reducido de 512 a 256 para ahorrar memoria
|
| 583 |
+
generator=torch.Generator("cpu").manual_seed(random_seed) # ✅ Seed aleatorio
|
| 584 |
+
).images[0]
|
| 585 |
+
|
| 586 |
+
print("✅ Imagen FLUX generada exitosamente")
|
| 587 |
+
|
| 588 |
+
except Exception as e:
|
| 589 |
+
print(f"❌ Error generando imagen FLUX: {e}")
|
| 590 |
+
print(f"🔍 Tipo de error: {type(e).__name__}")
|
| 591 |
+
|
| 592 |
+
# Si es un error de memoria, intentar con parámetros más conservadores
|
| 593 |
+
if "out of memory" in str(e).lower() or "cuda" in str(e).lower():
|
| 594 |
+
print("💾 Error de memoria, intentando con parámetros más conservadores...")
|
| 595 |
+
try:
|
| 596 |
+
image = pipeline(
|
| 597 |
+
prompt,
|
| 598 |
+
height=384, # ✅ Aún más pequeño
|
| 599 |
+
width=384, # ✅ Aún más pequeño
|
| 600 |
+
guidance_scale=3.0, # ✅ Reducido
|
| 601 |
+
num_inference_steps=10, # ✅ Menos pasos
|
| 602 |
+
max_sequence_length=128, # ✅ Secuencia más corta
|
| 603 |
+
generator=torch.Generator("cpu").manual_seed(random_seed)
|
| 604 |
+
).images[0]
|
| 605 |
+
print("✅ Imagen FLUX generada con parámetros conservadores")
|
| 606 |
+
except Exception as e2:
|
| 607 |
+
print(f"❌ Error incluso con parámetros conservadores: {e2}")
|
| 608 |
+
raise e2
|
| 609 |
+
else:
|
| 610 |
+
raise e
|
| 611 |
|
| 612 |
# Configuración específica para modelos Turbo (rápidos)
|
| 613 |
elif any(turbo_model in model_name.lower() for turbo_model in ["sdxl-turbo", "sd-turbo", "sdxl-lightning"]):
|
check_config.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Script para verificar la configuración del Space NTIA
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
from huggingface_hub import login, model_info
|
| 9 |
+
|
| 10 |
+
def check_hf_token():
|
| 11 |
+
"""Verificar si el token de Hugging Face está configurado"""
|
| 12 |
+
token = os.getenv("HF_TOKEN")
|
| 13 |
+
if not token:
|
| 14 |
+
print("❌ HF_TOKEN no está configurado")
|
| 15 |
+
print("💡 Configura la variable de entorno HF_TOKEN en el Space")
|
| 16 |
+
return False
|
| 17 |
+
|
| 18 |
+
print(f"✅ HF_TOKEN encontrado: {token[:10]}...{token[-10:] if len(token) > 20 else '***'}")
|
| 19 |
+
return True
|
| 20 |
+
|
| 21 |
+
def check_flux_access():
|
| 22 |
+
"""Verificar acceso a modelos FLUX"""
|
| 23 |
+
token = os.getenv("HF_TOKEN")
|
| 24 |
+
if not token:
|
| 25 |
+
print("❌ No se puede verificar acceso sin HF_TOKEN")
|
| 26 |
+
return False
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
# Intentar acceder a FLUX.1-dev
|
| 30 |
+
print("🔍 Verificando acceso a FLUX.1-dev...")
|
| 31 |
+
info = model_info("black-forest-labs/FLUX.1-dev", token=token)
|
| 32 |
+
print(f"✅ Acceso a FLUX.1-dev: {info.modelId}")
|
| 33 |
+
|
| 34 |
+
# Intentar acceder a FLUX.1-schnell
|
| 35 |
+
print("🔍 Verificando acceso a FLUX.1-schnell...")
|
| 36 |
+
info = model_info("black-forest-labs/FLUX.1-schnell", token=token)
|
| 37 |
+
print(f"✅ Acceso a FLUX.1-schnell: {info.modelId}")
|
| 38 |
+
|
| 39 |
+
return True
|
| 40 |
+
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"❌ Error verificando acceso a FLUX: {e}")
|
| 43 |
+
print("💡 Asegúrate de:")
|
| 44 |
+
print(" 1. Tener acceso a los modelos FLUX en Hugging Face")
|
| 45 |
+
print(" 2. Que el token tenga permisos de lectura")
|
| 46 |
+
print(" 3. Haber aceptado los términos de licencia")
|
| 47 |
+
return False
|
| 48 |
+
|
| 49 |
+
def check_dependencies():
|
| 50 |
+
"""Verificar dependencias necesarias"""
|
| 51 |
+
try:
|
| 52 |
+
import torch
|
| 53 |
+
print(f"✅ PyTorch: {torch.__version__}")
|
| 54 |
+
|
| 55 |
+
import diffusers
|
| 56 |
+
print(f"✅ Diffusers: {diffusers.__version__}")
|
| 57 |
+
|
| 58 |
+
from diffusers import FluxPipeline
|
| 59 |
+
print("✅ FluxPipeline disponible")
|
| 60 |
+
|
| 61 |
+
return True
|
| 62 |
+
|
| 63 |
+
except ImportError as e:
|
| 64 |
+
print(f"❌ Dependencia faltante: {e}")
|
| 65 |
+
return False
|
| 66 |
+
|
| 67 |
+
def main():
|
| 68 |
+
"""Función principal"""
|
| 69 |
+
print("🔧 Verificando configuración del Space NTIA...")
|
| 70 |
+
print("=" * 50)
|
| 71 |
+
|
| 72 |
+
# Verificar token
|
| 73 |
+
token_ok = check_hf_token()
|
| 74 |
+
print()
|
| 75 |
+
|
| 76 |
+
# Verificar dependencias
|
| 77 |
+
deps_ok = check_dependencies()
|
| 78 |
+
print()
|
| 79 |
+
|
| 80 |
+
# Verificar acceso a FLUX
|
| 81 |
+
if token_ok:
|
| 82 |
+
flux_ok = check_flux_access()
|
| 83 |
+
else:
|
| 84 |
+
flux_ok = False
|
| 85 |
+
print()
|
| 86 |
+
|
| 87 |
+
# Resumen
|
| 88 |
+
print("=" * 50)
|
| 89 |
+
print("📊 RESUMEN DE CONFIGURACIÓN:")
|
| 90 |
+
print(f" Token HF: {'✅' if token_ok else '❌'}")
|
| 91 |
+
print(f" Dependencias: {'✅' if deps_ok else '❌'}")
|
| 92 |
+
print(f" Acceso FLUX: {'✅' if flux_ok else '❌'}")
|
| 93 |
+
|
| 94 |
+
if token_ok and deps_ok and flux_ok:
|
| 95 |
+
print("\n🎉 ¡Todo configurado correctamente!")
|
| 96 |
+
print(" Los modelos FLUX deberían funcionar en el Space")
|
| 97 |
+
else:
|
| 98 |
+
print("\n⚠️ Hay problemas de configuración:")
|
| 99 |
+
if not token_ok:
|
| 100 |
+
print(" - Configura HF_TOKEN en las variables de entorno del Space")
|
| 101 |
+
if not deps_ok:
|
| 102 |
+
print(" - Instala las dependencias necesarias")
|
| 103 |
+
if not flux_ok:
|
| 104 |
+
print(" - Solicita acceso a los modelos FLUX en Hugging Face")
|
| 105 |
+
|
| 106 |
+
if __name__ == "__main__":
|
| 107 |
+
main()
|