"""
UI Components for Universal MCP Client - Fixed with optimal MCP guidance
"""
import gradio as gr
from gradio import ChatMessage
from typing import Tuple, List, Dict, Any
import os
import json
import logging
import traceback
from openai import OpenAI
from config import AppConfig, CUSTOM_CSS
from chat_handler import ChatHandler
from server_manager import ServerManager
from mcp_client import UniversalMCPClient
logger = logging.getLogger(__name__)
class UIComponents:
"""Manages Gradio UI components with improved MCP server management"""
def __init__(self, mcp_client: UniversalMCPClient):
self.mcp_client = mcp_client
self.chat_handler = ChatHandler(mcp_client)
self.server_manager = ServerManager(mcp_client)
self.current_user = None
def _initialize_default_servers(self):
"""Initialize default MCP servers on app startup"""
default_servers = [
("Nymbo-Tools", "Nymbo/Tools"),
("background removal", "ysharma/background-removal-mcp"),
]
logger.info("🚀 Initializing default MCP servers...")
for server_name, space_id in default_servers:
try:
status_msg, _ = self.server_manager.add_custom_server(server_name, space_id)
if "✅" in status_msg:
logger.info(f"✅ Added default server: {server_name}")
else:
logger.warning(f"⚠️ Failed to add default server {server_name}: {status_msg}")
except Exception as e:
logger.error(f"❌ Error adding default server {server_name}: {e}")
logger.info(f"📊 Initialized {len(self.mcp_client.servers)} default servers")
def create_interface(self) -> gr.Blocks:
"""Create the main Gradio interface with improved layout"""
with gr.Blocks(
title="Universal MCP Client - HF Inference Powered",
theme="Nymbo/Nymbo_Theme",
fill_height=True,
css=CUSTOM_CSS
) as demo:
# Create sidebar
self._create_sidebar()
# Create main chat area
chatbot = self._create_main_chat_area()
# Set up event handlers
self._setup_event_handlers(chatbot, demo)
return demo
def _create_sidebar(self):
"""Create the sidebar with login, provider/model selection, and server management"""
with gr.Sidebar(elem_id="main-sidebar"):
gr.Markdown("# 🤗 ChatMCP")
# API key management section
self._create_api_key_section()
# Provider and Model Selection with defaults
self._create_provider_model_selection()
# MCP Server Management
self._create_server_management_section()
# Collapsible information section
with gr.Accordion("📚 Guide & Info", open=False):
gr.Markdown("""
## 🎯 How To Use
1. **Add Your API Key**: Paste a valid Hugging Face Inference API token
2. **Add MCP Servers**: Connect to various AI tools on 🤗Hub
3. **Enable/Disable Servers**: Use checkboxes to control which servers are active
4. **Chat**: Interact with GPT-OSS and use connected MCP Servers
## 💭 Features
- **GPT-OSS Models**: OpenAI's latest open-source reasoning models (128k context)
- **MCP Integration**: Connect to thousands of AI apps on Hub via MCP protocol
- **Multi-Provider**: Access via Cerebras, Fireworks, Together AI, and others
- **Media Support**: Automatic embedding of media -- images, audio, and video etc
""")
def _create_api_key_section(self):
"""Create secret input section for Hugging Face API keys"""
with gr.Group(elem_classes="login-section"):
gr.Markdown("""
**🔐 HF Token**
""")
self.api_key_box = gr.Textbox(
label="HF API Token",
placeholder="hf_...",
type="password",
value=os.getenv("HF_TOKEN", "")
)
self.api_key_status = gr.Markdown("", visible=False, container=True)
def _create_provider_model_selection(self):
"""Create provider and model selection dropdowns with defaults"""
with gr.Accordion("🚀 Inference Configuration", open=False):
# Provider dropdown with default selection
provider_choices = list(AppConfig.INFERENCE_PROVIDERS.keys())
self.provider_dropdown = gr.Dropdown(
choices=provider_choices,
label="🔧 Inference Provider",
value="auto", # Default to Auto router
info="Choose your preferred inference provider"
)
# Model dropdown (will be populated based on provider)
self.model_dropdown = gr.Dropdown(
choices=[],
label="🤖 Model",
value=None,
info="Select model"
)
# Status display
self.api_status = gr.Markdown("⚪ Select provider and model to begin", container=True)
# Advanced generation parameters (OpenAI-compatible)
with gr.Row():
self.temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.3, step=0.01, label="Temperature")
self.top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.01, label="Top-p")
with gr.Row():
self.max_tokens_box = gr.Number(value=8192, precision=0, label="Max tokens")
self.seed_box = gr.Number(value=None, precision=0, label="Seed (-1 for random)")
with gr.Row():
self.frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.01, label="Frequency penalty")
self.presence_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.01, label="Presence penalty")
self.stop_sequences = gr.Textbox(label="Stop sequences (comma-separated)", placeholder="e.g. \n\n, User:")
# Reasoning effort (GPT-OSS only)
with gr.Group(visible=True) as self.reasoning_group:
self.reasoning_effort = gr.Radio(
choices=["low", "medium", "high"],
value=AppConfig.DEFAULT_REASONING_EFFORT,
label="Reasoning effort (GPT‑OSS)"
)
# Response format controls
with gr.Row():
self.response_format = gr.Dropdown(choices=["text", "json_object", "json_schema"], value="text", label="Response format")
with gr.Group(visible=False) as self.json_schema_group:
self.json_schema_name = gr.Textbox(label="JSON schema name", placeholder="my_schema")
self.json_schema_description = gr.Textbox(label="JSON schema description", placeholder="Describe the expected JSON")
self.json_schema_editor = gr.Textbox(label="JSON schema (object)", lines=8, placeholder='{"type":"object","properties":{...},"required":[...]}' )
self.json_schema_strict = gr.Checkbox(value=False, label="Strict schema adherence")
# Tools & tool choice
with gr.Row():
self.tool_choice = gr.Dropdown(choices=["auto", "none", "required", "function"], value="auto", label="Tool choice")
self.tool_function_name = gr.Textbox(label="Function name (when tool_choice=function)")
self.tool_prompt = gr.Textbox(label="Tool prompt", placeholder="Optional prompt appended before the tools")
self.tools_json = gr.Textbox(label="Tools (JSON array)", lines=8, placeholder='[{"type":"function","function":{"name":"fn","description":"...","parameters":{}}}]')
def _on_response_format_change(fmt):
return gr.Group(visible=(fmt == "json_schema"))
self.response_format.change(_on_response_format_change, inputs=[self.response_format], outputs=[self.json_schema_group])
def update_generation_params(
temperature, top_p, max_tokens, seed,
frequency_penalty, presence_penalty,
stop_sequences, reasoning_effort, response_format,
json_schema_name, json_schema_description, json_schema_editor, json_schema_strict,
tool_choice, tool_function_name, tool_prompt, tools_json
):
params = {
"temperature": float(temperature) if temperature is not None else None,
"top_p": float(top_p) if top_p is not None else None,
"max_tokens": int(max_tokens) if max_tokens else None,
# seed: -1 means random (omit from payload)
"seed": (None if (seed in (-1, "-1")) else (int(seed) if seed not in (None, "") else None)),
"frequency_penalty": float(frequency_penalty) if frequency_penalty is not None else None,
"presence_penalty": float(presence_penalty) if presence_penalty is not None else None,
# stop: list[str]
"stop": [s.strip() for s in stop_sequences.split(",") if s.strip()] if stop_sequences else None,
}
# Only include reasoning_effort for GPT-OSS models
try:
current_model = self.mcp_client.current_model
if current_model and AppConfig.is_gpt_oss_model(current_model):
params["reasoning_effort"] = reasoning_effort
except Exception:
# If any issue, omit reasoning
pass
# response_format
if response_format == "json_object":
params["response_format"] = {"type": "json_object"}
elif response_format == "json_schema":
try:
schema_obj = json.loads(json_schema_editor) if json_schema_editor else {}
except Exception as e:
return gr.Markdown(f"❌ Invalid JSON schema: {e}", visible=True)
json_fmt = {
"type": "json_schema",
"json_schema": {
"name": json_schema_name or "schema",
"schema": schema_obj,
},
}
if json_schema_description:
json_fmt["json_schema"]["description"] = json_schema_description
if json_schema_strict:
json_fmt["json_schema"]["strict"] = True
params["response_format"] = json_fmt
# tools (OpenAI-style tools are optional; only send tool_choice/tool_prompt if tools are provided)
tools = None
if tools_json and tools_json.strip():
try:
parsed = json.loads(tools_json)
if isinstance(parsed, list):
tools = parsed
else:
return gr.Markdown("❌ Tools must be a JSON array.", visible=True)
except Exception as e:
return gr.Markdown(f"❌ Invalid tools JSON: {e}", visible=True)
if tools is not None:
params["tools"] = tools
# tool_choice (only valid when tools are present)
if tool_choice in ("auto", "none", "required"):
params["tool_choice"] = tool_choice
elif tool_choice == "function" and tool_function_name:
params["tool_choice"] = {"type": "function", "function": {"name": tool_function_name}}
# tool_prompt (only meaningful when tools are present)
if tool_prompt and tool_prompt.strip():
params["tool_prompt"] = tool_prompt.strip()
self.mcp_client.set_generation_params(params)
return gr.Markdown("✅ Inference parameters updated.")
self.gen_param_status = gr.Markdown(visible=False)
# Wire updates on change
for comp in [
self.temperature_slider, self.top_p_slider,
self.max_tokens_box, self.seed_box, self.frequency_penalty,
self.presence_penalty,
self.stop_sequences, self.reasoning_effort, self.response_format,
self.json_schema_name, self.json_schema_description, self.json_schema_editor, self.json_schema_strict,
self.tool_choice, self.tool_function_name, self.tool_prompt, self.tools_json
]:
comp.change(
update_generation_params,
inputs=[
self.temperature_slider, self.top_p_slider,
self.max_tokens_box, self.seed_box, self.frequency_penalty,
self.presence_penalty,
self.stop_sequences, self.reasoning_effort, self.response_format,
self.json_schema_name, self.json_schema_description, self.json_schema_editor, self.json_schema_strict,
self.tool_choice, self.tool_function_name, self.tool_prompt, self.tools_json
],
outputs=[self.gen_param_status]
)
def _create_server_management_section(self):
"""Create the server management section with checkboxes and guidance"""
with gr.Group():
gr.Markdown("## 🔧 MCP Servers", container=True)
# ADDED: Optimal server count guidance
gr.Markdown("""
💡 Best Practice: For optimal performance, we recommend keeping
3-6 MCP servers enabled at once. Too many servers can:
• Increase context usage (reducing available tokens for conversation)
• Potentially confuse the model when selecting tools
• Slow down response times
You can add more servers but selectively enable only the ones you need for your current task.
""", container=True)
# Server controls
with gr.Row():
self.add_server_btn = gr.Button("Add MCP Server", variant="primary", size="sm")
self.remove_all_btn = gr.Button("Remove All", variant="secondary", size="sm")
# Add a save button (initially hidden)
self.save_server_btn = gr.Button("Save Server", variant="primary", size="sm", visible=False)
# MCP server selection
from mcp_spaces_finder import _finder
spaces = _finder.get_mcp_spaces()
self.mcp_dropdown = gr.Dropdown(
choices=spaces,
label=f"**Available MCP Servers ({len(spaces)}**)",
value=None,
info="Choose from HuggingFace spaces",
allow_custom_value=True,
visible=False
)
self.server_name = gr.Textbox(
label="Server Title",
placeholder="e.g., Text to Image Generator",
visible=False
)
# Server status and controls
self.server_checkboxes = gr.CheckboxGroup(
label="Active Servers (Check to enable)",
choices=[],
value=[],
info="✅ Enabled servers can be used | ⬜ Disabled servers are ignored"
)
self.add_server_output = gr.Markdown("", visible=False, container=True)
def _create_main_chat_area(self) -> gr.Chatbot:
"""Create the main chat area"""
with gr.Column(elem_classes="main-content"):
chatbot = gr.Chatbot(
label="Universal MCP-Powered AI Assistant",
show_label=False,
type="messages",
scale=1,
show_copy_button=True,
avatar_images=None,
value=[
ChatMessage(
role="assistant",
content="""Welcome! I'm your MCP-powered AI assistant using OpenAI's GPT-OSS models via HuggingFace Inference Providers.
🎉 **Pre-loaded MCP servers ready to use:**
- **Nymbo-Tools** - Web Fetch, Web Search, Code Interpreter, Memory, Deep Research, Speech/Image/Video Gen
- **background removal** - Remove backgrounds from images
You can start using these servers right away, add more servers, or remove them as needed. Try asking me to generate an image, create speech, or any other task!"""
)
]
)
with gr.Column(scale=0, elem_classes="input-area"):
self.chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="multiple",
placeholder="Enter message or upload files...",
show_label=False,
sources=["upload", "microphone"],
file_types=None
)
return chatbot
def _setup_event_handlers(self, chatbot: gr.Chatbot, demo: gr.Blocks):
"""Set up all event handlers"""
def handle_api_key_update(api_key: str):
"""Persist user-provided API key for the current session"""
if not api_key:
os.environ.pop("HF_TOKEN", None)
AppConfig.HF_TOKEN = None
self.mcp_client.hf_client = None
return gr.Markdown("⚠️ API token cleared. Add a token to enable calls.", visible=True)
token = api_key.strip()
os.environ["HF_TOKEN"] = token
AppConfig.HF_TOKEN = token
try:
self.mcp_client.hf_client = OpenAI(
base_url="https://router.huggingface.co/v1",
api_key=token
)
logger.info("✅ HuggingFace client configured from pasted token")
return gr.Markdown("✅ API token saved for this session.", visible=True)
except Exception as exc:
logger.error(f"❌ Failed to configure HF client with provided token: {exc}")
return gr.Markdown("❌ Invalid token. Please verify and try again.", visible=True)
def initialize_api_key_status():
token_present = bool(os.getenv("HF_TOKEN"))
if token_present:
return gr.Markdown("✅ API token detected from environment.", visible=True)
return gr.Markdown("", visible=False)
# Provider selection with auto-model loading
def handle_provider_change(provider_id):
if not provider_id:
return gr.Dropdown(choices=[], value=None), "⚪ Select provider first", gr.Group(visible=False)
available_models = AppConfig.get_available_models_for_provider(provider_id)
model_choices = [(AppConfig.AVAILABLE_MODELS[model]["name"], model) for model in available_models]
# Auto-select 120b model if available
default_model = "openai/gpt-oss-120b" if "openai/gpt-oss-120b" in available_models else (available_models[0] if available_models else None)
# Get context info for status
if default_model:
model_info = AppConfig.AVAILABLE_MODELS.get(default_model, {})
context_length = model_info.get("context_length", 128000)
status_msg = f"✅ Provider selected, model auto-selected ({context_length:,} token context)"
else:
status_msg = "✅ Provider selected, please select a model"
# Reasoning UI visibility based on whether model is GPT-OSS
show_reasoning = AppConfig.is_gpt_oss_model(default_model) if default_model else False
return (
gr.Dropdown(choices=model_choices, value=default_model, label="🤖 Model"),
status_msg,
gr.Group(visible=show_reasoning)
)
# Model selection
def handle_model_change(provider_id, model_id):
if not provider_id or not model_id:
return "⚪ Select both provider and model", gr.Group(visible=False)
self.mcp_client.set_model_and_provider(provider_id, model_id)
# Get model info
model_info = AppConfig.AVAILABLE_MODELS.get(model_id, {})
context_length = model_info.get("context_length", 128000)
active_params = model_info.get("active_params", "N/A")
if self.mcp_client.hf_client:
status = f"✅ Ready! Using {active_params} active params, {context_length:,} token context"
else:
status = "❌ Please add your Hugging Face API token"
# Toggle reasoning UI by model family
show_reasoning = AppConfig.is_gpt_oss_model(model_id)
return status, gr.Group(visible=show_reasoning)
# Chat handlers
def submit_message(message, history):
if message and (message.get("text", "").strip() or message.get("files", [])):
converted_history = []
for msg in history:
if isinstance(msg, dict):
converted_history.append(ChatMessage(
role=msg.get('role', 'assistant'),
content=msg.get('content', ''),
metadata=msg.get('metadata', None)
))
else:
converted_history.append(msg)
new_history, cleared_input = self.chat_handler.process_multimodal_message(message, converted_history)
return new_history, cleared_input
return history, gr.MultimodalTextbox(value=None, interactive=False)
def enable_input():
return gr.MultimodalTextbox(interactive=True)
def show_add_server_fields():
return [
gr.Dropdown(visible=True), # mcp_dropdown
gr.Textbox(visible=True), # server_name
gr.Button(interactive=False), # add_server_btn - disable it
gr.Button(visible=True) # save_server_btn - show it
]
def hide_add_server_fields():
return [
gr.Dropdown(visible=False, value=None), # mcp_dropdown
gr.Textbox(visible=False, value=""), # server_name
gr.Button(interactive=True), # add_server_btn - re-enable it
gr.Button(visible=False) # save_server_btn - hide it
]
def handle_add_server(server_title, selected_space):
if not server_title or not selected_space:
return [
gr.Dropdown(visible=False, value=None),
gr.Textbox(visible=False, value=""),
gr.Button(interactive=True), # Re-enable add button
gr.Button(visible=False), # Hide save button
gr.CheckboxGroup(choices=list(self.mcp_client.servers.keys()),
value=[name for name, enabled in self.mcp_client.enabled_servers.items() if enabled]),
gr.Markdown("❌ Please provide both server title and space selection", visible=True)
]
try:
status_msg, _ = self.server_manager.add_custom_server(server_title.strip(), selected_space)
# Update checkboxes with all servers
server_choices = list(self.mcp_client.servers.keys())
enabled_servers = [name for name, enabled in self.mcp_client.enabled_servers.items() if enabled]
# Check if we have many servers and show a warning
warning_msg = ""
if len(enabled_servers) > 6:
warning_msg = "\n\n⚠️ **Note:** You have more than 6 servers enabled. Consider disabling some for better performance."
return [
gr.Dropdown(visible=False, value=None),
gr.Textbox(visible=False, value=""),
gr.Button(interactive=True), # Re-enable add button
gr.Button(visible=False), # Hide save button
gr.CheckboxGroup(choices=server_choices, value=enabled_servers),
gr.Markdown(status_msg + warning_msg, visible=True)
]
except Exception as e:
logger.error(f"Error adding server: {e}")
return [
gr.Dropdown(visible=False, value=None),
gr.Textbox(visible=False, value=""),
gr.Button(interactive=True), # Re-enable add button
gr.Button(visible=False), # Hide save button
gr.CheckboxGroup(choices=list(self.mcp_client.servers.keys()),
value=[name for name, enabled in self.mcp_client.enabled_servers.items() if enabled]),
gr.Markdown(f"❌ Error: {str(e)}", visible=True)
]
def handle_server_toggle(enabled_servers):
"""Handle enabling/disabling servers via checkboxes"""
# Update enabled status for all servers
for server_name in self.mcp_client.servers.keys():
self.mcp_client.enable_server(server_name, server_name in enabled_servers)
enabled_count = len(enabled_servers)
# Provide feedback based on count
if enabled_count == 0:
message = "ℹ️ No servers enabled - chatbot will use native capabilities only"
elif enabled_count <= 6:
message = f"✅ {enabled_count} server{'s' if enabled_count != 1 else ''} enabled - optimal configuration"
else:
message = f"⚠️ {enabled_count} servers enabled - consider reducing to 3-6 for better performance"
return gr.Markdown(message, visible=True)
def handle_remove_all():
"""Remove all MCP servers"""
count = self.mcp_client.remove_all_servers()
return [
gr.CheckboxGroup(choices=[], value=[]),
gr.Markdown(f"✅ Removed all {count} servers", visible=True)
]
# Load handler to initialize default mcp servers
def initialize_defaults():
"""Initialize default servers and update UI on app load"""
self._initialize_default_servers()
# Return updated checkboxes with the default servers
server_choices = list(self.mcp_client.servers.keys())
enabled_servers = [name for name, enabled in self.mcp_client.enabled_servers.items() if enabled]
return gr.CheckboxGroup(
choices=server_choices,
value=enabled_servers,
label=f"Active Servers ({len(server_choices)} loaded)"
)
self.api_key_box.input(
handle_api_key_update,
inputs=[self.api_key_box],
outputs=[self.api_key_status]
)
demo.load(
fn=initialize_api_key_status,
outputs=[self.api_key_status]
)
# Connect provider/model dropdowns with auto-selection on load
demo.load(
fn=lambda: handle_provider_change("auto"),
outputs=[self.model_dropdown, self.api_status, self.reasoning_group]
)
# Initialise default mcp server load
demo.load(
fn=initialize_defaults,
outputs=[self.server_checkboxes]
)
self.provider_dropdown.change(
handle_provider_change,
inputs=[self.provider_dropdown],
outputs=[self.model_dropdown, self.api_status, self.reasoning_group]
)
self.model_dropdown.change(
handle_model_change,
inputs=[self.provider_dropdown, self.model_dropdown],
outputs=[self.api_status, self.reasoning_group]
)
# Connect chat with streaming generator for incremental updates
def submit_message_stream(message, history):
if message and (message.get("text", "").strip() or message.get("files", [])):
converted_history = []
for msg in history:
if isinstance(msg, dict):
converted_history.append(ChatMessage(
role=msg.get('role', 'assistant'),
content=msg.get('content', ''),
metadata=msg.get('metadata', None)
))
else:
converted_history.append(msg)
# Delegate to streaming generator in ChatHandler
yield from self.chat_handler.process_multimodal_message_stream(message, converted_history)
return
yield history, gr.MultimodalTextbox(value=None, interactive=False)
chat_submit = self.chat_input.submit(
submit_message_stream,
inputs=[self.chat_input, chatbot],
outputs=[chatbot, self.chat_input]
)
# No .then needed; generator yields a final interactive=True state
# Connect server management with proper button state handling
self.add_server_btn.click(
fn=show_add_server_fields,
outputs=[self.mcp_dropdown, self.server_name, self.add_server_btn, self.save_server_btn]
)
# Connect save button
self.save_server_btn.click(
fn=handle_add_server,
inputs=[self.server_name, self.mcp_dropdown],
outputs=[self.mcp_dropdown, self.server_name, self.add_server_btn, self.save_server_btn, self.server_checkboxes, self.add_server_output]
)
self.server_checkboxes.change(
handle_server_toggle,
inputs=[self.server_checkboxes],
outputs=[self.add_server_output]
)
self.remove_all_btn.click(
handle_remove_all,
outputs=[self.server_checkboxes, self.add_server_output]
)