Commit
·
24e151d
1
Parent(s):
1eea134
update app.py
Browse files- app.py +130 -52
- utils/utils.py +31 -0
app.py
CHANGED
|
@@ -6,11 +6,12 @@ from leffa.model import LeffaModel
|
|
| 6 |
from leffa.inference import LeffaInference
|
| 7 |
from utils.garment_agnostic_mask_predictor import AutoMasker
|
| 8 |
from utils.densepose_predictor import DensePosePredictor
|
|
|
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# Download checkpoints
|
| 13 |
-
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./")
|
| 14 |
|
| 15 |
|
| 16 |
def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
@@ -18,6 +19,8 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
| 18 |
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
|
| 19 |
src_image = Image.open(src_image_path)
|
| 20 |
ref_image = Image.open(ref_image_path)
|
|
|
|
|
|
|
| 21 |
|
| 22 |
src_image_array = np.array(src_image)
|
| 23 |
ref_image_array = np.array(ref_image)
|
|
@@ -74,6 +77,14 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
| 74 |
return np.array(gen_image)
|
| 75 |
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
if __name__ == "__main__":
|
| 78 |
# import sys
|
| 79 |
|
|
@@ -82,56 +93,123 @@ if __name__ == "__main__":
|
|
| 82 |
# control_type = sys.argv[3]
|
| 83 |
# leffa_predict(src_image_path, ref_image_path, control_type)
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
demo.launch(share=True, server_port=7860)
|
|
|
|
| 6 |
from leffa.inference import LeffaInference
|
| 7 |
from utils.garment_agnostic_mask_predictor import AutoMasker
|
| 8 |
from utils.densepose_predictor import DensePosePredictor
|
| 9 |
+
from utils.utils import resize_and_center
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
|
| 13 |
# Download checkpoints
|
| 14 |
+
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
|
| 15 |
|
| 16 |
|
| 17 |
def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
|
|
| 19 |
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
|
| 20 |
src_image = Image.open(src_image_path)
|
| 21 |
ref_image = Image.open(ref_image_path)
|
| 22 |
+
src_image = resize_and_center(src_image, 768, 1024)
|
| 23 |
+
ref_image = resize_and_center(ref_image, 768, 1024)
|
| 24 |
|
| 25 |
src_image_array = np.array(src_image)
|
| 26 |
ref_image_array = np.array(ref_image)
|
|
|
|
| 77 |
return np.array(gen_image)
|
| 78 |
|
| 79 |
|
| 80 |
+
def leffa_predict_vt(src_image_path, ref_image_path):
|
| 81 |
+
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def leffa_predict_pt(src_image_path, ref_image_path):
|
| 85 |
+
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
|
| 86 |
+
|
| 87 |
+
|
| 88 |
if __name__ == "__main__":
|
| 89 |
# import sys
|
| 90 |
|
|
|
|
| 93 |
# control_type = sys.argv[3]
|
| 94 |
# leffa_predict(src_image_path, ref_image_path, control_type)
|
| 95 |
|
| 96 |
+
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
|
| 97 |
+
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
|
| 98 |
+
|
| 99 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
|
| 100 |
+
gr.Markdown(title)
|
| 101 |
+
gr.Markdown(description)
|
| 102 |
+
|
| 103 |
+
with gr.Tab("Control Appearance (Virtual Try-on)"):
|
| 104 |
+
with gr.Row():
|
| 105 |
+
with gr.Column():
|
| 106 |
+
gr.Markdown("#### Person Image")
|
| 107 |
+
vt_src_image = gr.Image(
|
| 108 |
+
sources=["upload"],
|
| 109 |
+
type="filepath",
|
| 110 |
+
label="Person Image",
|
| 111 |
+
width=512,
|
| 112 |
+
height=512,
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
gr.Examples(
|
| 116 |
+
inputs=vt_src_image,
|
| 117 |
+
examples_per_page=5,
|
| 118 |
+
examples=["./ckpts/examples/person1/01320_00.jpg",
|
| 119 |
+
"./ckpts/examples/person1/01350_00.jpg",
|
| 120 |
+
"./ckpts/examples/person1/01365_00.jpg",
|
| 121 |
+
"./ckpts/examples/person1/01376_00.jpg",
|
| 122 |
+
"./ckpts/examples/person1/01416_00.jpg",],
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
with gr.Column():
|
| 126 |
+
gr.Markdown("#### Garment Image")
|
| 127 |
+
vt_ref_image = gr.Image(
|
| 128 |
+
sources=["upload"],
|
| 129 |
+
type="filepath",
|
| 130 |
+
label="Garment Image",
|
| 131 |
+
width=512,
|
| 132 |
+
height=512,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
gr.Examples(
|
| 136 |
+
inputs=vt_ref_image,
|
| 137 |
+
examples_per_page=5,
|
| 138 |
+
examples=["./ckpts/examples/garment/01449_00.jpg",
|
| 139 |
+
"./ckpts/examples/garment/01486_00.jpg",
|
| 140 |
+
"./ckpts/examples/garment/01853_00.jpg",
|
| 141 |
+
"./ckpts/examples/garment/02070_00.jpg",
|
| 142 |
+
"./ckpts/examples/garment/03553_00.jpg",],
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
with gr.Column():
|
| 146 |
+
gr.Markdown("#### Generated Image")
|
| 147 |
+
vt_gen_image = gr.Image(
|
| 148 |
+
label="Generated Image",
|
| 149 |
+
width=512,
|
| 150 |
+
height=512,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
with gr.Row():
|
| 154 |
+
vt_gen_button = gr.Button("Generate")
|
| 155 |
+
|
| 156 |
+
vt_gen_button.click(fn=leffa_predict_vt, inputs=[
|
| 157 |
+
vt_src_image, vt_ref_image], outputs=[vt_gen_image])
|
| 158 |
+
|
| 159 |
+
with gr.Tab("Control Pose (Pose Transfer)"):
|
| 160 |
+
with gr.Row():
|
| 161 |
+
with gr.Column():
|
| 162 |
+
gr.Markdown("#### Person Image")
|
| 163 |
+
pt_ref_image = gr.Image(
|
| 164 |
+
sources=["upload"],
|
| 165 |
+
type="filepath",
|
| 166 |
+
label="Person Image",
|
| 167 |
+
width=512,
|
| 168 |
+
height=512,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
gr.Examples(
|
| 172 |
+
inputs=vt_src_image,
|
| 173 |
+
examples_per_page=5,
|
| 174 |
+
examples=["./ckpts/examples/person1/01320_00.jpg",
|
| 175 |
+
"./ckpts/examples/person1/01350_00.jpg",
|
| 176 |
+
"./ckpts/examples/person1/01365_00.jpg",
|
| 177 |
+
"./ckpts/examples/person1/01376_00.jpg",
|
| 178 |
+
"./ckpts/examples/person1/01416_00.jpg",],
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
with gr.Column():
|
| 182 |
+
gr.Markdown("#### Target Pose Person Image")
|
| 183 |
+
pt_src_image = gr.Image(
|
| 184 |
+
sources=["upload"],
|
| 185 |
+
type="filepath",
|
| 186 |
+
label="Target Pose Person Image",
|
| 187 |
+
width=512,
|
| 188 |
+
height=512,
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
gr.Examples(
|
| 192 |
+
inputs=pt_src_image,
|
| 193 |
+
examples_per_page=5,
|
| 194 |
+
examples=["./ckpts/examples/person2/01850_00.jpg",
|
| 195 |
+
"./ckpts/examples/person2/01875_00.jpg",
|
| 196 |
+
"./ckpts/examples/person2/02532_00.jpg",
|
| 197 |
+
"./ckpts/examples/person2/02902_00.jpg",
|
| 198 |
+
"./ckpts/examples/person2/05346_00.jpg",],
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
with gr.Column():
|
| 202 |
+
gr.Markdown("#### Generated Image")
|
| 203 |
+
pt_gen_image = gr.Image(
|
| 204 |
+
label="Generated Image",
|
| 205 |
+
width=512,
|
| 206 |
+
height=512,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
with gr.Row():
|
| 210 |
+
pose_transfer_gen_button = gr.Button("Generate")
|
| 211 |
+
|
| 212 |
+
pose_transfer_gen_button.click(fn=leffa_predict_pt, inputs=[
|
| 213 |
+
pt_src_image, pt_ref_image], outputs=[pt_gen_image])
|
| 214 |
|
| 215 |
demo.launch(share=True, server_port=7860)
|
utils/utils.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def resize_and_center(image, target_width, target_height, fill_color=(255, 255, 255)):
|
| 5 |
+
"""
|
| 6 |
+
Resize the image to fit within (target_width, target_height) while maintaining aspect ratio,
|
| 7 |
+
and center it with padding to match the exact target size.
|
| 8 |
+
|
| 9 |
+
Parameters:
|
| 10 |
+
- image: PIL.Image object
|
| 11 |
+
- target_width: Desired width of the final image
|
| 12 |
+
- target_height: Desired height of the final image
|
| 13 |
+
- fill_color: Background color used for padding
|
| 14 |
+
|
| 15 |
+
Returns:
|
| 16 |
+
- A resized and centered PIL.Image object
|
| 17 |
+
"""
|
| 18 |
+
# Resize the image while maintaining the aspect ratio
|
| 19 |
+
image.thumbnail((target_width, target_height), Image.Resampling.LANCZOS)
|
| 20 |
+
|
| 21 |
+
# Create a new image with the desired size and fill color
|
| 22 |
+
new_image = Image.new("RGB", (target_width, target_height), fill_color)
|
| 23 |
+
|
| 24 |
+
# Calculate the position to center the resized image
|
| 25 |
+
x_offset = (target_width - image.width) // 2
|
| 26 |
+
y_offset = (target_height - image.height) // 2
|
| 27 |
+
|
| 28 |
+
# Paste the resized image onto the new image with padding
|
| 29 |
+
new_image.paste(image, (x_offset, y_offset))
|
| 30 |
+
|
| 31 |
+
return new_image
|