Spaces:
Running
Running
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from huggingface_hub.errors import HfHubHTTPError | |
| import os | |
| import base64 | |
| from PIL import Image | |
| import io | |
| from typing import Optional | |
| HF_READ_TOKEN = os.getenv("HF_READ_TOKEN") | |
| if HF_READ_TOKEN: | |
| print("Default Hugging Face token available from environment.") | |
| else: | |
| print("No default Hugging Face token configured; relying on user sign-in.") | |
| # Function to encode image to base64 | |
| def encode_image(image_path): | |
| if not image_path: | |
| print("No image path provided") | |
| return None | |
| try: | |
| print(f"Encoding image from path: {image_path}") | |
| # If it's already a PIL Image | |
| if isinstance(image_path, Image.Image): | |
| image = image_path | |
| else: | |
| # Try to open the image file | |
| image = Image.open(image_path) | |
| # Convert to RGB if image has an alpha channel (RGBA) | |
| if image.mode == 'RGBA': | |
| image = image.convert('RGB') | |
| # Encode to base64 | |
| buffered = io.BytesIO() | |
| image.save(buffered, format="JPEG") | |
| img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| print("Image encoded successfully") | |
| return img_str | |
| except Exception as e: | |
| print(f"Error encoding image: {e}") | |
| return None | |
| def render_profile(profile: Optional[gr.OAuthProfile]) -> str: | |
| """Display the current authentication status in the UI.""" | |
| if profile is None: | |
| return "Not signed in. Use the button above to sign in with Hugging Face and run inference with your own account." | |
| display_name = getattr(profile, "name", None) or getattr(profile, "username", "Hugging Face user") | |
| return f"Signed in as **{display_name}**." | |
| def refresh_auth_info( | |
| profile: Optional[gr.OAuthProfile], | |
| oauth_token: Optional[gr.OAuthToken], | |
| ): | |
| """Capture OAuth credentials for downstream callbacks.""" | |
| return oauth_token, render_profile(profile) | |
| def respond( | |
| message, | |
| image_files, # Changed parameter name and structure | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| frequency_penalty, | |
| seed, | |
| custom_model, | |
| model_search_term, | |
| selected_model, | |
| oauth_token: Optional[gr.OAuthToken] = None | |
| ): | |
| print(f"Received message: {message}") | |
| print(f"Received {len(image_files) if image_files else 0} images") | |
| print(f"History: {history}") | |
| print(f"System message: {system_message}") | |
| print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
| print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
| print(f"Selected model (custom_model): {custom_model}") | |
| print(f"Model search term: {model_search_term}") | |
| api_token: Optional[str] = None | |
| token_source = "anonymous" | |
| if oauth_token is not None and getattr(oauth_token, "token", None): | |
| api_token = oauth_token.token | |
| token_source = "user" | |
| print("Using OAuth token from signed-in user for inference.") | |
| elif HF_READ_TOKEN: | |
| api_token = HF_READ_TOKEN | |
| token_source = "space" | |
| print("Using server-configured Hugging Face token for inference.") | |
| else: | |
| print("No default token configured; relying on user sign-in or anonymous access.") | |
| # Initialize the Inference Client with appropriate credentials | |
| client_kwargs = {} | |
| if api_token is not None: | |
| client_kwargs["token"] = api_token | |
| else: | |
| print("No Hugging Face token available; attempting anonymous inference (may fail for private models).") | |
| client = InferenceClient(**client_kwargs) | |
| print("Hugging Face Inference Client initialized.") | |
| # Convert seed to None if -1 (meaning random) | |
| if seed == -1: | |
| seed = None | |
| # Create multimodal content if images are present | |
| if image_files and len(image_files) > 0: | |
| # Process the user message to include images | |
| user_content = [] | |
| # Add text part if there is any | |
| if message and message.strip(): | |
| user_content.append({ | |
| "type": "text", | |
| "text": message | |
| }) | |
| # Add image parts | |
| for img in image_files: | |
| if img is not None: | |
| # Get raw image data from path | |
| try: | |
| encoded_image = encode_image(img) | |
| if encoded_image: | |
| user_content.append({ | |
| "type": "image_url", | |
| "image_url": { | |
| "url": f"data:image/jpeg;base64,{encoded_image}" | |
| } | |
| }) | |
| except Exception as e: | |
| print(f"Error encoding image: {e}") | |
| else: | |
| # Text-only message | |
| user_content = message | |
| # Prepare messages in the format expected by the API | |
| messages = [{"role": "system", "content": system_message}] | |
| print("Initial messages array constructed.") | |
| # Add conversation history to the context | |
| for val in history: | |
| user_part = val[0] | |
| assistant_part = val[1] | |
| if user_part: | |
| # Handle both text-only and multimodal messages in history | |
| if isinstance(user_part, tuple) and len(user_part) == 2: | |
| # This is a multimodal message with text and images | |
| history_content = [] | |
| if user_part[0]: # Text | |
| history_content.append({ | |
| "type": "text", | |
| "text": user_part[0] | |
| }) | |
| for img in user_part[1]: # Images | |
| if img: | |
| try: | |
| encoded_img = encode_image(img) | |
| if encoded_img: | |
| history_content.append({ | |
| "type": "image_url", | |
| "image_url": { | |
| "url": f"data:image/jpeg;base64,{encoded_img}" | |
| } | |
| }) | |
| except Exception as e: | |
| print(f"Error encoding history image: {e}") | |
| messages.append({"role": "user", "content": history_content}) | |
| else: | |
| # Regular text message | |
| messages.append({"role": "user", "content": user_part}) | |
| print(f"Added user message to context (type: {type(user_part)})") | |
| if assistant_part: | |
| messages.append({"role": "assistant", "content": assistant_part}) | |
| print(f"Added assistant message to context: {assistant_part}") | |
| # Append the latest user message | |
| messages.append({"role": "user", "content": user_content}) | |
| print(f"Latest user message appended (content type: {type(user_content)})") | |
| # Determine which model to use, prioritizing custom_model if provided | |
| model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model | |
| print(f"Model selected for inference: {model_to_use}") | |
| # Start with an empty string to build the response as tokens stream in | |
| response = "" | |
| print(f"Sending request to Hugging Face inference.") | |
| # Prepare parameters for the chat completion request | |
| parameters = { | |
| "max_tokens": max_tokens, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "frequency_penalty": frequency_penalty, | |
| } | |
| if seed is not None: | |
| parameters["seed"] = seed | |
| # Use the InferenceClient for making the request | |
| try: | |
| # Create a generator for the streaming response | |
| stream = client.chat_completion( | |
| model=model_to_use, | |
| messages=messages, | |
| stream=True, | |
| **parameters | |
| ) | |
| print("Received tokens: ", end="", flush=True) | |
| # Process the streaming response | |
| for chunk in stream: | |
| if hasattr(chunk, 'choices') and len(chunk.choices) > 0: | |
| # Extract the content from the response | |
| if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'): | |
| token_text = chunk.choices[0].delta.content | |
| if token_text: | |
| print(token_text, end="", flush=True) | |
| response += token_text | |
| yield response | |
| print() | |
| except HfHubHTTPError as e: | |
| status = getattr(e.response, "status_code", None) | |
| if status in (401, 403): | |
| if token_source == "user": | |
| raise gr.Error( | |
| ( | |
| "Failed to generate response: {}\n\n" | |
| "Your Hugging Face session must grant the **inference-api** (Make calls to Inference Providers) " | |
| "permission. Sign out, then sign back in and approve the requested scopes, or update the Space " | |
| "metadata to request that scope." | |
| ).format(e) | |
| ) from e | |
| if token_source == "space": | |
| raise gr.Error( | |
| ( | |
| "Failed to generate response: {}\n\n" | |
| "The Space-level token lacks Inference Provider access. Update the `HF_READ_TOKEN` secret with " | |
| "a token that has the `Make calls to Inference Providers` permission, or have users sign in with " | |
| "their own accounts." | |
| ).format(e) | |
| ) from e | |
| raise gr.Error( | |
| "Failed to generate response: {}. Sign in with your Hugging Face account and retry." | |
| .format(e) | |
| ) from e | |
| print(f"Error during inference: {e}") | |
| response += f"\nError: {str(e)}" | |
| yield response | |
| except Exception as e: | |
| print(f"Error during inference: {e}") | |
| response += f"\nError: {str(e)}" | |
| yield response | |
| print("Completed response generation.") | |
| # GRADIO UI | |
| with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
| with gr.Row(elem_id="oauth-row"): | |
| login_button = gr.LoginButton() | |
| auth_status = gr.Markdown(render_profile(None), elem_id="oauth-status") | |
| # Create the chatbot component | |
| chatbot = gr.Chatbot( | |
| height=600, | |
| show_copy_button=True, | |
| placeholder="Select a model and begin chatting. Now supports multimodal inputs.", | |
| layout="panel" | |
| ) | |
| print("Chatbot interface created.") | |
| # Multimodal textbox for messages (combines text and file uploads) | |
| msg = gr.MultimodalTextbox( | |
| placeholder="Type a message or upload images...", | |
| show_label=False, | |
| container=False, | |
| scale=12, | |
| file_types=["image"], | |
| file_count="multiple", | |
| sources=["upload"] | |
| ) | |
| # Create accordion for settings | |
| with gr.Accordion("Settings", open=False): | |
| # System message | |
| system_message_box = gr.Textbox( | |
| value="You are a helpful AI assistant that can understand images and text.", | |
| placeholder="You are a helpful assistant.", | |
| label="System Prompt" | |
| ) | |
| # Generation parameters | |
| with gr.Row(): | |
| with gr.Column(): | |
| max_tokens_slider = gr.Slider( | |
| minimum=1, | |
| maximum=4096, | |
| value=512, | |
| step=1, | |
| label="Max tokens" | |
| ) | |
| temperature_slider = gr.Slider( | |
| minimum=0.1, | |
| maximum=4.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature" | |
| ) | |
| top_p_slider = gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-P" | |
| ) | |
| with gr.Column(): | |
| frequency_penalty_slider = gr.Slider( | |
| minimum=-2.0, | |
| maximum=2.0, | |
| value=0.0, | |
| step=0.1, | |
| label="Frequency Penalty" | |
| ) | |
| seed_slider = gr.Slider( | |
| minimum=-1, | |
| maximum=65535, | |
| value=-1, | |
| step=1, | |
| label="Seed (-1 for random)" | |
| ) | |
| # Custom model box | |
| custom_model_box = gr.Textbox( | |
| value="", | |
| label="Custom Model", | |
| info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", | |
| placeholder="meta-llama/Llama-3.3-70B-Instruct" | |
| ) | |
| # Model search | |
| model_search_box = gr.Textbox( | |
| label="Filter Models", | |
| placeholder="Search for a featured model...", | |
| lines=1 | |
| ) | |
| # Featured models list | |
| # Updated to include multimodal models | |
| models_list = [ | |
| "meta-llama/Llama-3.2-11B-Vision-Instruct", | |
| "meta-llama/Llama-3.3-70B-Instruct", | |
| "meta-llama/Llama-3.1-70B-Instruct", | |
| "meta-llama/Llama-3.0-70B-Instruct", | |
| "meta-llama/Llama-3.2-3B-Instruct", | |
| "meta-llama/Llama-3.2-1B-Instruct", | |
| "meta-llama/Llama-3.1-8B-Instruct", | |
| "NousResearch/Hermes-3-Llama-3.1-8B", | |
| "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
| "mistralai/Mistral-Nemo-Instruct-2407", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| "mistralai/Mistral-7B-Instruct-v0.3", | |
| "mistralai/Mistral-7B-Instruct-v0.2", | |
| "Qwen/Qwen3-235B-A22B", | |
| "Qwen/Qwen3-32B", | |
| "Qwen/Qwen2.5-72B-Instruct", | |
| "Qwen/Qwen2.5-3B-Instruct", | |
| "Qwen/Qwen2.5-0.5B-Instruct", | |
| "Qwen/QwQ-32B", | |
| "Qwen/Qwen2.5-Coder-32B-Instruct", | |
| "microsoft/Phi-3.5-mini-instruct", | |
| "microsoft/Phi-3-mini-128k-instruct", | |
| "microsoft/Phi-3-mini-4k-instruct", | |
| ] | |
| featured_model_radio = gr.Radio( | |
| label="Select a model below", | |
| choices=models_list, | |
| value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model | |
| interactive=True | |
| ) | |
| gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)") | |
| # Chat history state | |
| chat_history = gr.State([]) | |
| oauth_token_state = gr.State(None) | |
| # Function to filter models | |
| def filter_models(search_term): | |
| print(f"Filtering models with search term: {search_term}") | |
| filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
| print(f"Filtered models: {filtered}") | |
| return gr.update(choices=filtered) | |
| # Function to set custom model from radio | |
| def set_custom_model_from_radio(selected): | |
| print(f"Featured model selected: {selected}") | |
| return selected | |
| # Function for the chat interface | |
| def user(user_message, history): | |
| # Debug logging for troubleshooting | |
| print(f"User message received: {user_message}") | |
| # Skip if message is empty (no text and no files) | |
| if not user_message or (not user_message.get("text") and not user_message.get("files")): | |
| print("Empty message, skipping") | |
| return history | |
| # Prepare multimodal message format | |
| text_content = user_message.get("text", "").strip() | |
| files = user_message.get("files", []) | |
| print(f"Text content: {text_content}") | |
| print(f"Files: {files}") | |
| # If both text and files are empty, skip | |
| if not text_content and not files: | |
| print("No content to display") | |
| return history | |
| # Add message with images to history | |
| if files and len(files) > 0: | |
| # Add text message first if it exists | |
| if text_content: | |
| # Add a separate text message | |
| print(f"Adding text message: {text_content}") | |
| history.append([text_content, None]) | |
| # Then add each image file separately | |
| for file_path in files: | |
| if file_path and isinstance(file_path, str): | |
| print(f"Adding image: {file_path}") | |
| # Add image as a separate message with no text | |
| history.append([f"", None]) | |
| return history | |
| else: | |
| # For text-only messages | |
| print(f"Adding text-only message: {text_content}") | |
| history.append([text_content, None]) | |
| return history | |
| # Define bot response function | |
| def bot( | |
| history, | |
| system_msg, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| freq_penalty, | |
| seed, | |
| custom_model, | |
| search_term, | |
| selected_model, | |
| oauth_token_obj: Optional[gr.OAuthToken] = None, | |
| *_extra, | |
| ): | |
| # Check if history is valid | |
| if not history or len(history) == 0: | |
| print("No history to process") | |
| return history | |
| # Get the most recent message and detect if it's an image | |
| user_message = history[-1][0] | |
| print(f"Processing user message: {user_message}") | |
| is_image = False | |
| image_path = None | |
| text_content = user_message | |
| # Check if this is an image message (marked with ![Image]) | |
| if isinstance(user_message, str) and user_message.startswith(": | |
| is_image = True | |
| # Extract image path from markdown format  | |
| image_path = user_message.replace(".replace(")", "") | |
| print(f"Image detected: {image_path}") | |
| text_content = "" # No text for image-only messages | |
| # Look back for text context if this is an image | |
| text_context = "" | |
| if is_image and len(history) > 1: | |
| # Use the previous message as context if it's text | |
| prev_message = history[-2][0] | |
| if isinstance(prev_message, str) and not prev_message.startswith(": | |
| text_context = prev_message | |
| print(f"Using text context from previous message: {text_context}") | |
| # Process message through respond function | |
| history[-1][1] = "" | |
| # Use either the image or text for the API | |
| if is_image: | |
| # For image messages | |
| for response in respond( | |
| text_context, # Text context from previous message if any | |
| [image_path], # Current image | |
| history[:-1], # Previous history | |
| system_msg, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| freq_penalty, | |
| seed, | |
| custom_model, | |
| search_term, | |
| selected_model, | |
| oauth_token=oauth_token_obj, | |
| ): | |
| history[-1][1] = response | |
| yield history | |
| else: | |
| # For text-only messages | |
| for response in respond( | |
| text_content, # Text message | |
| None, # No image | |
| history[:-1], # Previous history | |
| system_msg, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| freq_penalty, | |
| seed, | |
| custom_model, | |
| search_term, | |
| selected_model, | |
| oauth_token=oauth_token_obj, | |
| ): | |
| history[-1][1] = response | |
| yield history | |
| # Event handlers - only using the MultimodalTextbox's built-in submit functionality | |
| msg.submit( | |
| user, | |
| [msg, chatbot], | |
| [chatbot], | |
| queue=False | |
| ).then( | |
| bot, | |
| [chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider, | |
| frequency_penalty_slider, seed_slider, custom_model_box, | |
| model_search_box, featured_model_radio, oauth_token_state], | |
| [chatbot] | |
| ).then( | |
| lambda: {"text": "", "files": []}, # Clear inputs after submission | |
| None, | |
| [msg] | |
| ) | |
| # Connect the model filter to update the radio choices | |
| model_search_box.change( | |
| fn=filter_models, | |
| inputs=model_search_box, | |
| outputs=featured_model_radio | |
| ) | |
| print("Model search box change event linked.") | |
| # Connect the featured model radio to update the custom model box | |
| featured_model_radio.change( | |
| fn=set_custom_model_from_radio, | |
| inputs=featured_model_radio, | |
| outputs=custom_model_box | |
| ) | |
| print("Featured model radio button change event linked.") | |
| login_button.click( | |
| refresh_auth_info, | |
| inputs=None, | |
| outputs=[oauth_token_state, auth_status], | |
| ) | |
| demo.load(refresh_auth_info, inputs=None, outputs=[oauth_token_state, auth_status]) | |
| print("Gradio interface initialized.") | |
| if __name__ == "__main__": | |
| print("Launching the demo application.") | |
| demo.launch(show_api=True, mcp_server=True) |