Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,13 +5,7 @@ import json
|
|
| 5 |
import base64
|
| 6 |
from PIL import Image
|
| 7 |
import io
|
| 8 |
-
from smolagents.mcp_client import MCPClient
|
| 9 |
|
| 10 |
-
# Global variables for MCP Client and TTS tool
|
| 11 |
-
mcp_client = None
|
| 12 |
-
tts_tool = None
|
| 13 |
-
|
| 14 |
-
# Access token from environment
|
| 15 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 16 |
print("Access token loaded.")
|
| 17 |
|
|
@@ -23,14 +17,19 @@ def encode_image(image_path):
|
|
| 23 |
|
| 24 |
try:
|
| 25 |
print(f"Encoding image from path: {image_path}")
|
|
|
|
|
|
|
| 26 |
if isinstance(image_path, Image.Image):
|
| 27 |
image = image_path
|
| 28 |
else:
|
|
|
|
| 29 |
image = Image.open(image_path)
|
| 30 |
|
|
|
|
| 31 |
if image.mode == 'RGBA':
|
| 32 |
image = image.convert('RGB')
|
| 33 |
|
|
|
|
| 34 |
buffered = io.BytesIO()
|
| 35 |
image.save(buffered, format="JPEG")
|
| 36 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
@@ -40,19 +39,69 @@ def encode_image(image_path):
|
|
| 40 |
print(f"Error encoding image: {e}")
|
| 41 |
return None
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
try:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
else:
|
| 53 |
-
|
| 54 |
except Exception as e:
|
| 55 |
-
print(f"Error
|
|
|
|
| 56 |
|
| 57 |
def respond(
|
| 58 |
message,
|
|
@@ -82,6 +131,7 @@ def respond(
|
|
| 82 |
print(f"Model search term: {model_search_term}")
|
| 83 |
print(f"Selected model from radio: {selected_model}")
|
| 84 |
|
|
|
|
| 85 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
| 86 |
|
| 87 |
if custom_api_key.strip() != "":
|
|
@@ -89,57 +139,81 @@ def respond(
|
|
| 89 |
else:
|
| 90 |
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
| 91 |
|
|
|
|
| 92 |
client = InferenceClient(token=token_to_use, provider=provider)
|
| 93 |
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
| 94 |
|
|
|
|
| 95 |
if seed == -1:
|
| 96 |
seed = None
|
| 97 |
|
|
|
|
| 98 |
if image_files and len(image_files) > 0:
|
|
|
|
| 99 |
user_content = []
|
|
|
|
|
|
|
| 100 |
if message and message.strip():
|
| 101 |
-
user_content.append({
|
|
|
|
|
|
|
|
|
|
| 102 |
|
|
|
|
| 103 |
for img in image_files:
|
| 104 |
if img is not None:
|
|
|
|
| 105 |
try:
|
| 106 |
encoded_image = encode_image(img)
|
| 107 |
if encoded_image:
|
| 108 |
user_content.append({
|
| 109 |
"type": "image_url",
|
| 110 |
-
"image_url": {
|
|
|
|
|
|
|
| 111 |
})
|
| 112 |
except Exception as e:
|
| 113 |
print(f"Error encoding image: {e}")
|
| 114 |
else:
|
|
|
|
| 115 |
user_content = message
|
| 116 |
|
|
|
|
| 117 |
messages = [{"role": "system", "content": system_message}]
|
| 118 |
print("Initial messages array constructed.")
|
| 119 |
|
|
|
|
| 120 |
for val in history:
|
| 121 |
user_part = val[0]
|
| 122 |
assistant_part = val[1]
|
| 123 |
if user_part:
|
|
|
|
| 124 |
if isinstance(user_part, tuple) and len(user_part) == 2:
|
|
|
|
| 125 |
history_content = []
|
| 126 |
-
if user_part[0]:
|
| 127 |
-
history_content.append({
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
for img in user_part[1]:
|
| 130 |
if img:
|
| 131 |
try:
|
| 132 |
encoded_img = encode_image(img)
|
| 133 |
if encoded_img:
|
| 134 |
history_content.append({
|
| 135 |
"type": "image_url",
|
| 136 |
-
"image_url": {
|
|
|
|
|
|
|
| 137 |
})
|
| 138 |
except Exception as e:
|
| 139 |
print(f"Error encoding history image: {e}")
|
| 140 |
|
| 141 |
messages.append({"role": "user", "content": history_content})
|
| 142 |
else:
|
|
|
|
| 143 |
messages.append({"role": "user", "content": user_part})
|
| 144 |
print(f"Added user message to context (type: {type(user_part)})")
|
| 145 |
|
|
@@ -147,15 +221,19 @@ def respond(
|
|
| 147 |
messages.append({"role": "assistant", "content": assistant_part})
|
| 148 |
print(f"Added assistant message to context: {assistant_part}")
|
| 149 |
|
|
|
|
| 150 |
messages.append({"role": "user", "content": user_content})
|
| 151 |
print(f"Latest user message appended (content type: {type(user_content)})")
|
| 152 |
|
|
|
|
| 153 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
| 154 |
print(f"Model selected for inference: {model_to_use}")
|
| 155 |
|
|
|
|
| 156 |
response = ""
|
| 157 |
print(f"Sending request to {provider} provider.")
|
| 158 |
|
|
|
|
| 159 |
parameters = {
|
| 160 |
"max_tokens": max_tokens,
|
| 161 |
"temperature": temperature,
|
|
@@ -166,7 +244,9 @@ def respond(
|
|
| 166 |
if seed is not None:
|
| 167 |
parameters["seed"] = seed
|
| 168 |
|
|
|
|
| 169 |
try:
|
|
|
|
| 170 |
stream = client.chat_completion(
|
| 171 |
model=model_to_use,
|
| 172 |
messages=messages,
|
|
@@ -176,8 +256,10 @@ def respond(
|
|
| 176 |
|
| 177 |
print("Received tokens: ", end="", flush=True)
|
| 178 |
|
|
|
|
| 179 |
for chunk in stream:
|
| 180 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
|
|
|
| 181 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
| 182 |
token_text = chunk.choices[0].delta.content
|
| 183 |
if token_text:
|
|
@@ -193,40 +275,16 @@ def respond(
|
|
| 193 |
|
| 194 |
print("Completed response generation.")
|
| 195 |
|
| 196 |
-
# Function to
|
| 197 |
-
def generate_audio(history):
|
| 198 |
-
if not history or len(history) == 0:
|
| 199 |
-
print("No history available for audio generation")
|
| 200 |
-
return None
|
| 201 |
-
last_message = history[-1][1] # Bot's response
|
| 202 |
-
if not last_message or not isinstance(last_message, str):
|
| 203 |
-
print("Last message is empty or not a string")
|
| 204 |
-
return None
|
| 205 |
-
if tts_tool:
|
| 206 |
-
try:
|
| 207 |
-
# Call the TTS tool directly, expecting (sample_rate, audio_array)
|
| 208 |
-
result = tts_tool(text=last_message, speed=1.0)
|
| 209 |
-
if result and len(result) == 2:
|
| 210 |
-
sample_rate, audio_data = result
|
| 211 |
-
print("Audio generated successfully")
|
| 212 |
-
return (sample_rate, audio_data)
|
| 213 |
-
else:
|
| 214 |
-
print("TTS tool returned invalid result")
|
| 215 |
-
return None
|
| 216 |
-
except Exception as e:
|
| 217 |
-
print(f"Error generating audio: {e}")
|
| 218 |
-
return None
|
| 219 |
-
else:
|
| 220 |
-
print("TTS tool not available")
|
| 221 |
-
return None
|
| 222 |
-
|
| 223 |
def validate_provider(api_key, provider):
|
| 224 |
if not api_key.strip() and provider != "hf-inference":
|
| 225 |
return gr.update(value="hf-inference")
|
| 226 |
return gr.update(value=provider)
|
| 227 |
|
| 228 |
-
#
|
| 229 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme")
|
|
|
|
|
|
|
| 230 |
height=600,
|
| 231 |
show_copy_button=True,
|
| 232 |
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
|
|
@@ -234,6 +292,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") chatbot = gr.Chatbot(
|
|
| 234 |
)
|
| 235 |
print("Chatbot interface created.")
|
| 236 |
|
|
|
|
| 237 |
msg = gr.MultimodalTextbox(
|
| 238 |
placeholder="Type a message or upload images...",
|
| 239 |
show_label=False,
|
|
@@ -243,83 +302,207 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") chatbot = gr.Chatbot(
|
|
| 243 |
file_count="multiple",
|
| 244 |
sources=["upload"]
|
| 245 |
)
|
|
|
|
|
|
|
| 246 |
|
| 247 |
-
#
|
| 248 |
-
with gr.Row():
|
| 249 |
-
generate_audio_btn = gr.Button("Generate Audio from Last Response")
|
| 250 |
-
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
| 251 |
-
|
| 252 |
with gr.Accordion("Settings", open=False):
|
|
|
|
| 253 |
system_message_box = gr.Textbox(
|
| 254 |
value="You are a helpful AI assistant that can understand images and text.",
|
| 255 |
placeholder="You are a helpful assistant.",
|
| 256 |
label="System Prompt"
|
| 257 |
)
|
| 258 |
|
|
|
|
| 259 |
with gr.Row():
|
| 260 |
with gr.Column():
|
| 261 |
-
max_tokens_slider = gr.Slider(
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
with gr.Column():
|
| 265 |
-
frequency_penalty_slider = gr.Slider(
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
|
|
|
| 268 |
providers_list = [
|
| 269 |
-
"hf-inference",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
]
|
| 271 |
|
| 272 |
-
provider_radio = gr.Radio(
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
models_list = [
|
| 278 |
-
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
| 279 |
-
"meta-llama/Llama-3.
|
| 280 |
-
"meta-llama/Llama-3.1-
|
| 281 |
-
"
|
| 282 |
-
"
|
| 283 |
-
"
|
| 284 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
]
|
| 286 |
|
| 287 |
-
featured_model_radio = gr.Radio(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
| 289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
chat_history = gr.State([])
|
| 291 |
|
|
|
|
| 292 |
def filter_models(search_term):
|
| 293 |
print(f"Filtering models with search term: {search_term}")
|
| 294 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
| 295 |
print(f"Filtered models: {filtered}")
|
| 296 |
return gr.update(choices=filtered)
|
| 297 |
|
|
|
|
| 298 |
def set_custom_model_from_radio(selected):
|
| 299 |
print(f"Featured model selected: {selected}")
|
| 300 |
return selected
|
| 301 |
|
|
|
|
| 302 |
def user(user_message, history):
|
| 303 |
print(f"User message received: {user_message}")
|
|
|
|
|
|
|
| 304 |
if not user_message or (not user_message.get("text") and not user_message.get("files")):
|
| 305 |
print("Empty message, skipping")
|
| 306 |
return history
|
| 307 |
|
|
|
|
| 308 |
text_content = user_message.get("text", "").strip()
|
| 309 |
files = user_message.get("files", [])
|
| 310 |
|
| 311 |
print(f"Text content: {text_content}")
|
| 312 |
print(f"Files: {files}")
|
| 313 |
|
|
|
|
| 314 |
if not text_content and not files:
|
| 315 |
print("No content to display")
|
| 316 |
return history
|
| 317 |
|
|
|
|
| 318 |
if files and len(files) > 0:
|
|
|
|
| 319 |
if text_content:
|
| 320 |
print(f"Adding text message: {text_content}")
|
| 321 |
history.append([text_content, None])
|
| 322 |
|
|
|
|
| 323 |
for file_path in files:
|
| 324 |
if file_path and isinstance(file_path, str):
|
| 325 |
print(f"Adding image: {file_path}")
|
|
@@ -327,10 +510,12 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") chatbot = gr.Chatbot(
|
|
| 327 |
|
| 328 |
return history
|
| 329 |
else:
|
|
|
|
| 330 |
print(f"Adding text-only message: {text_content}")
|
| 331 |
history.append([text_content, None])
|
| 332 |
return history
|
| 333 |
|
|
|
|
| 334 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
| 335 |
if not history or len(history) == 0:
|
| 336 |
print("No history to process")
|
|
@@ -360,50 +545,91 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") chatbot = gr.Chatbot(
|
|
| 360 |
|
| 361 |
if is_image:
|
| 362 |
for response in respond(
|
| 363 |
-
text_context,
|
| 364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
):
|
| 366 |
history[-1][1] = response
|
| 367 |
yield history
|
| 368 |
else:
|
| 369 |
for response in respond(
|
| 370 |
-
text_content,
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
):
|
| 373 |
history[-1][1] = response
|
| 374 |
yield history
|
| 375 |
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
|
| 382 |
-
model_search_box.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
print("Model search box change event linked.")
|
| 384 |
|
| 385 |
-
featured_model_radio.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
print("Featured model radio button change event linked.")
|
| 387 |
-
|
| 388 |
-
byok_textbox.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
print("BYOK textbox change event linked.")
|
| 390 |
|
| 391 |
-
provider_radio.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
print("Provider radio button change event linked.")
|
| 393 |
|
| 394 |
-
# Event handler for audio generation
|
| 395 |
-
generate_audio_btn.click(fn=generate_audio, inputs=[chatbot], outputs=[audio_output])
|
| 396 |
-
|
| 397 |
-
# Initialize MCP Client on app load
|
| 398 |
-
demo.load(init_mcp_client)
|
| 399 |
-
|
| 400 |
print("Gradio interface initialized.")
|
| 401 |
|
| 402 |
if __name__ == "__main__":
|
| 403 |
print("Launching the demo application.")
|
| 404 |
-
|
| 405 |
-
demo.launch(server_api=True)
|
| 406 |
-
finally:
|
| 407 |
-
if mcp_client:
|
| 408 |
-
mcp_client.close()
|
| 409 |
-
print("MCP Client closed.")
|
|
|
|
| 5 |
import base64
|
| 6 |
from PIL import Image
|
| 7 |
import io
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 10 |
print("Access token loaded.")
|
| 11 |
|
|
|
|
| 17 |
|
| 18 |
try:
|
| 19 |
print(f"Encoding image from path: {image_path}")
|
| 20 |
+
|
| 21 |
+
# If it's already a PIL Image
|
| 22 |
if isinstance(image_path, Image.Image):
|
| 23 |
image = image_path
|
| 24 |
else:
|
| 25 |
+
# Try to open the image file
|
| 26 |
image = Image.open(image_path)
|
| 27 |
|
| 28 |
+
# Convert to RGB if image has an alpha channel (RGBA)
|
| 29 |
if image.mode == 'RGBA':
|
| 30 |
image = image.convert('RGB')
|
| 31 |
|
| 32 |
+
# Encode to base64
|
| 33 |
buffered = io.BytesIO()
|
| 34 |
image.save(buffered, format="JPEG")
|
| 35 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
| 39 |
print(f"Error encoding image: {e}")
|
| 40 |
return None
|
| 41 |
|
| 42 |
+
def text_generation(
|
| 43 |
+
message: str,
|
| 44 |
+
system_message: str = "You are a helpful AI assistant.",
|
| 45 |
+
max_tokens: int = 512,
|
| 46 |
+
temperature: float = 0.7,
|
| 47 |
+
top_p: float = 0.95,
|
| 48 |
+
frequency_penalty: float = 0.0,
|
| 49 |
+
provider: str = "hf-inference",
|
| 50 |
+
model: str = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
| 51 |
+
) -> str:
|
| 52 |
+
"""
|
| 53 |
+
Generate text based on the input message using the specified model and provider.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
message (str): The input text prompt.
|
| 57 |
+
system_message (str): The system prompt to guide the AI's behavior.
|
| 58 |
+
max_tokens (int): Maximum number of tokens to generate.
|
| 59 |
+
temperature (float): Sampling temperature for randomness.
|
| 60 |
+
top_p (float): Top-p sampling parameter.
|
| 61 |
+
frequency_penalty (float): Penalty for frequent tokens.
|
| 62 |
+
provider (str): Inference provider (e.g., 'hf-inference').
|
| 63 |
+
model (str): Model identifier (e.g., 'meta-llama/Llama-3.2-11B-Vision-Instruct').
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
str: The generated text response.
|
| 67 |
+
"""
|
| 68 |
+
print(f"Text generation called with message: {message}")
|
| 69 |
+
|
| 70 |
+
# Initialize the Inference Client
|
| 71 |
+
client = InferenceClient(token=ACCESS_TOKEN, provider=provider)
|
| 72 |
+
print(f"Inference Client initialized with {provider} provider.")
|
| 73 |
+
|
| 74 |
+
# Prepare messages
|
| 75 |
+
messages = [
|
| 76 |
+
{"role": "system", "content": system_message},
|
| 77 |
+
{"role": "user", "content": message}
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
# Prepare parameters
|
| 81 |
+
parameters = {
|
| 82 |
+
"max_tokens": max_tokens,
|
| 83 |
+
"temperature": temperature,
|
| 84 |
+
"top_p": top_p,
|
| 85 |
+
"frequency_penalty": frequency_penalty,
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
try:
|
| 89 |
+
# Perform chat completion (non-streaming for MCP simplicity)
|
| 90 |
+
response = client.chat_completion(
|
| 91 |
+
model=model,
|
| 92 |
+
messages=messages,
|
| 93 |
+
stream=False,
|
| 94 |
+
**parameters
|
| 95 |
+
)
|
| 96 |
+
if hasattr(response, 'choices') and len(response.choices) > 0:
|
| 97 |
+
generated_text = response.choices[0].message.content
|
| 98 |
+
print(f"Generated text: {generated_text}")
|
| 99 |
+
return generated_text
|
| 100 |
else:
|
| 101 |
+
raise ValueError("No valid response received from the model.")
|
| 102 |
except Exception as e:
|
| 103 |
+
print(f"Error during text generation: {e}")
|
| 104 |
+
return f"Error: {str(e)}"
|
| 105 |
|
| 106 |
def respond(
|
| 107 |
message,
|
|
|
|
| 131 |
print(f"Model search term: {model_search_term}")
|
| 132 |
print(f"Selected model from radio: {selected_model}")
|
| 133 |
|
| 134 |
+
# Determine which token to use
|
| 135 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
| 136 |
|
| 137 |
if custom_api_key.strip() != "":
|
|
|
|
| 139 |
else:
|
| 140 |
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
| 141 |
|
| 142 |
+
# Initialize the Inference Client with the provider and appropriate token
|
| 143 |
client = InferenceClient(token=token_to_use, provider=provider)
|
| 144 |
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
| 145 |
|
| 146 |
+
# Convert seed to None if -1 (meaning random)
|
| 147 |
if seed == -1:
|
| 148 |
seed = None
|
| 149 |
|
| 150 |
+
# Create multimodal content if images are present
|
| 151 |
if image_files and len(image_files) > 0:
|
| 152 |
+
# Process the user message to include images
|
| 153 |
user_content = []
|
| 154 |
+
|
| 155 |
+
# Add text part if there is any
|
| 156 |
if message and message.strip():
|
| 157 |
+
user_content.append({
|
| 158 |
+
"type": "text",
|
| 159 |
+
"text": message
|
| 160 |
+
})
|
| 161 |
|
| 162 |
+
# Add image parts
|
| 163 |
for img in image_files:
|
| 164 |
if img is not None:
|
| 165 |
+
# Get raw image data from path
|
| 166 |
try:
|
| 167 |
encoded_image = encode_image(img)
|
| 168 |
if encoded_image:
|
| 169 |
user_content.append({
|
| 170 |
"type": "image_url",
|
| 171 |
+
"image_url": {
|
| 172 |
+
"url": f"data:image/jpeg;base64,{encoded_image}"
|
| 173 |
+
}
|
| 174 |
})
|
| 175 |
except Exception as e:
|
| 176 |
print(f"Error encoding image: {e}")
|
| 177 |
else:
|
| 178 |
+
# Text-only message
|
| 179 |
user_content = message
|
| 180 |
|
| 181 |
+
# Prepare messages in the format expected by the API
|
| 182 |
messages = [{"role": "system", "content": system_message}]
|
| 183 |
print("Initial messages array constructed.")
|
| 184 |
|
| 185 |
+
# Add conversation history to the context
|
| 186 |
for val in history:
|
| 187 |
user_part = val[0]
|
| 188 |
assistant_part = val[1]
|
| 189 |
if user_part:
|
| 190 |
+
# Handle both text-only and multimodal messages in history
|
| 191 |
if isinstance(user_part, tuple) and len(user_part) == 2:
|
| 192 |
+
# This is a multimodal message with text and images
|
| 193 |
history_content = []
|
| 194 |
+
if user_part[0]: # Text
|
| 195 |
+
history_content.append({
|
| 196 |
+
"type": "text",
|
| 197 |
+
"text": user_part[0]
|
| 198 |
+
})
|
| 199 |
|
| 200 |
+
for img in user_part[1]: # Images
|
| 201 |
if img:
|
| 202 |
try:
|
| 203 |
encoded_img = encode_image(img)
|
| 204 |
if encoded_img:
|
| 205 |
history_content.append({
|
| 206 |
"type": "image_url",
|
| 207 |
+
"image_url": {
|
| 208 |
+
"url": f"data:image/jpeg;base64,{encoded_img}"
|
| 209 |
+
}
|
| 210 |
})
|
| 211 |
except Exception as e:
|
| 212 |
print(f"Error encoding history image: {e}")
|
| 213 |
|
| 214 |
messages.append({"role": "user", "content": history_content})
|
| 215 |
else:
|
| 216 |
+
# Regular text message
|
| 217 |
messages.append({"role": "user", "content": user_part})
|
| 218 |
print(f"Added user message to context (type: {type(user_part)})")
|
| 219 |
|
|
|
|
| 221 |
messages.append({"role": "assistant", "content": assistant_part})
|
| 222 |
print(f"Added assistant message to context: {assistant_part}")
|
| 223 |
|
| 224 |
+
# Append the latest user message
|
| 225 |
messages.append({"role": "user", "content": user_content})
|
| 226 |
print(f"Latest user message appended (content type: {type(user_content)})")
|
| 227 |
|
| 228 |
+
# Determine which model to use, prioritizing custom_model if provided
|
| 229 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
| 230 |
print(f"Model selected for inference: {model_to_use}")
|
| 231 |
|
| 232 |
+
# Start with an empty string to build the response as tokens stream in
|
| 233 |
response = ""
|
| 234 |
print(f"Sending request to {provider} provider.")
|
| 235 |
|
| 236 |
+
# Prepare parameters for the chat completion request
|
| 237 |
parameters = {
|
| 238 |
"max_tokens": max_tokens,
|
| 239 |
"temperature": temperature,
|
|
|
|
| 244 |
if seed is not None:
|
| 245 |
parameters["seed"] = seed
|
| 246 |
|
| 247 |
+
# Use the InferenceClient for making the request
|
| 248 |
try:
|
| 249 |
+
# Create a generator for the streaming response
|
| 250 |
stream = client.chat_completion(
|
| 251 |
model=model_to_use,
|
| 252 |
messages=messages,
|
|
|
|
| 256 |
|
| 257 |
print("Received tokens: ", end="", flush=True)
|
| 258 |
|
| 259 |
+
# Process the streaming response
|
| 260 |
for chunk in stream:
|
| 261 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
| 262 |
+
# Extract the content from the response
|
| 263 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
| 264 |
token_text = chunk.choices[0].delta.content
|
| 265 |
if token_text:
|
|
|
|
| 275 |
|
| 276 |
print("Completed response generation.")
|
| 277 |
|
| 278 |
+
# Function to validate provider selection based on BYOK
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
def validate_provider(api_key, provider):
|
| 280 |
if not api_key.strip() and provider != "hf-inference":
|
| 281 |
return gr.update(value="hf-inference")
|
| 282 |
return gr.update(value=provider)
|
| 283 |
|
| 284 |
+
# GRADIO UI
|
| 285 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
| 286 |
+
# Create the chatbot component
|
| 287 |
+
chatbot = gr.Chatbot(
|
| 288 |
height=600,
|
| 289 |
show_copy_button=True,
|
| 290 |
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
|
|
|
|
| 292 |
)
|
| 293 |
print("Chatbot interface created.")
|
| 294 |
|
| 295 |
+
# Multimodal textbox for messages (combines text and file uploads)
|
| 296 |
msg = gr.MultimodalTextbox(
|
| 297 |
placeholder="Type a message or upload images...",
|
| 298 |
show_label=False,
|
|
|
|
| 302 |
file_count="multiple",
|
| 303 |
sources=["upload"]
|
| 304 |
)
|
| 305 |
+
|
| 306 |
+
# Note: We're removing the separate submit button since MultimodalTextbox has its own
|
| 307 |
|
| 308 |
+
# Create accordion for settings
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
with gr.Accordion("Settings", open=False):
|
| 310 |
+
# System message
|
| 311 |
system_message_box = gr.Textbox(
|
| 312 |
value="You are a helpful AI assistant that can understand images and text.",
|
| 313 |
placeholder="You are a helpful assistant.",
|
| 314 |
label="System Prompt"
|
| 315 |
)
|
| 316 |
|
| 317 |
+
# Generation parameters
|
| 318 |
with gr.Row():
|
| 319 |
with gr.Column():
|
| 320 |
+
max_tokens_slider = gr.Slider(
|
| 321 |
+
minimum=1,
|
| 322 |
+
maximum=4096,
|
| 323 |
+
value=512,
|
| 324 |
+
step=1,
|
| 325 |
+
label="Max tokens"
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
temperature_slider = gr.Slider(
|
| 329 |
+
minimum=0.1,
|
| 330 |
+
maximum=4.0,
|
| 331 |
+
value=0.7,
|
| 332 |
+
step=0.1,
|
| 333 |
+
label="Temperature"
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
top_p_slider = gr.Slider(
|
| 337 |
+
minimum=0.1,
|
| 338 |
+
maximum=1.0,
|
| 339 |
+
value=0.95,
|
| 340 |
+
step=0.05,
|
| 341 |
+
label="Top-P"
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
with gr.Column():
|
| 345 |
+
frequency_penalty_slider = gr.Slider(
|
| 346 |
+
minimum=-2.0,
|
| 347 |
+
maximum=2.0,
|
| 348 |
+
value=0.0,
|
| 349 |
+
step=0.1,
|
| 350 |
+
label="Frequency Penalty"
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
seed_slider = gr.Slider(
|
| 354 |
+
minimum=-1,
|
| 355 |
+
maximum=65535,
|
| 356 |
+
value=-1,
|
| 357 |
+
step=1,
|
| 358 |
+
label="Seed (-1 for random)"
|
| 359 |
+
)
|
| 360 |
|
| 361 |
+
# Provider selection
|
| 362 |
providers_list = [
|
| 363 |
+
"hf-inference", # Default Hugging Face Inference
|
| 364 |
+
"cerebras", # Cerebras provider
|
| 365 |
+
"together", # Together AI
|
| 366 |
+
"sambanova", # SambaNova
|
| 367 |
+
"novita", # Novita AI
|
| 368 |
+
"cohere", # Cohere
|
| 369 |
+
"fireworks-ai", # Fireworks AI
|
| 370 |
+
"hyperbolic", # Hyperbolic
|
| 371 |
+
"nebius", # Nebius
|
| 372 |
]
|
| 373 |
|
| 374 |
+
provider_radio = gr.Radio(
|
| 375 |
+
choices=providers_list,
|
| 376 |
+
value="hf-inference",
|
| 377 |
+
label="Inference Provider",
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
# New BYOK textbox
|
| 381 |
+
byok_textbox = gr.Textbox(
|
| 382 |
+
value="",
|
| 383 |
+
label="BYOK (Bring Your Own Key)",
|
| 384 |
+
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
| 385 |
+
placeholder="Enter your Hugging Face API token",
|
| 386 |
+
type="password" # Hide the API key for security
|
| 387 |
+
)
|
| 388 |
|
| 389 |
+
# Custom model box
|
| 390 |
+
custom_model_box = gr.Textbox(
|
| 391 |
+
value="",
|
| 392 |
+
label="Custom Model",
|
| 393 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
| 394 |
+
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
# Model search
|
| 398 |
+
model_search_box = gr.Textbox(
|
| 399 |
+
label="Filter Models",
|
| 400 |
+
placeholder="Search for a featured model...",
|
| 401 |
+
lines=1
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# Featured models list
|
| 405 |
models_list = [
|
| 406 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
| 407 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
| 408 |
+
"meta-llama/Llama-3.1-70B-Instruct",
|
| 409 |
+
"meta-llama/Llama-3.0-70B-Instruct",
|
| 410 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
| 411 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
| 412 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
| 413 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
| 414 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
| 415 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
| 416 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 417 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 418 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 419 |
+
"Qwen/Qwen3-235B-A22B",
|
| 420 |
+
"Qwen/Qwen3-32B",
|
| 421 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
| 422 |
+
"Qwen/Qwen2.5-3B-Instruct",
|
| 423 |
+
"Qwen/Qwen2.5-0.5B-Instruct",
|
| 424 |
+
"Qwen/QwQ-32B",
|
| 425 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 426 |
+
"microsoft/Phi-3.5-mini-instruct",
|
| 427 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
| 428 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
| 429 |
]
|
| 430 |
|
| 431 |
+
featured_model_radio = gr.Radio(
|
| 432 |
+
label="Select a model below",
|
| 433 |
+
choices=models_list,
|
| 434 |
+
value="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
| 435 |
+
interactive=True
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
| 439 |
|
| 440 |
+
# Add MCP Support Section
|
| 441 |
+
with gr.Accordion("MCP Support (for LLMs)", open=False):
|
| 442 |
+
gr.Markdown("""
|
| 443 |
+
### MCP Support
|
| 444 |
+
|
| 445 |
+
This app supports the Model Context Protocol (MCP), allowing Large Language Models like Claude Desktop to use it as a text generation tool.
|
| 446 |
+
|
| 447 |
+
To use this app with an MCP client, add the following configuration:
|
| 448 |
+
|
| 449 |
+
```json
|
| 450 |
+
{
|
| 451 |
+
"mcpServers": {
|
| 452 |
+
"textGen": {
|
| 453 |
+
"url": "https://YOUR_USERNAME-serverless-textgen-hub.hf.space/gradio_api/mcp/sse"
|
| 454 |
+
}
|
| 455 |
+
}
|
| 456 |
+
}
|
| 457 |
+
```
|
| 458 |
+
|
| 459 |
+
Replace `YOUR_USERNAME` with your actual Hugging Face username.
|
| 460 |
+
""")
|
| 461 |
+
|
| 462 |
+
# Chat history state
|
| 463 |
chat_history = gr.State([])
|
| 464 |
|
| 465 |
+
# Function to filter models
|
| 466 |
def filter_models(search_term):
|
| 467 |
print(f"Filtering models with search term: {search_term}")
|
| 468 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
| 469 |
print(f"Filtered models: {filtered}")
|
| 470 |
return gr.update(choices=filtered)
|
| 471 |
|
| 472 |
+
# Function to set custom model from radio
|
| 473 |
def set_custom_model_from_radio(selected):
|
| 474 |
print(f"Featured model selected: {selected}")
|
| 475 |
return selected
|
| 476 |
|
| 477 |
+
# Function for the chat interface
|
| 478 |
def user(user_message, history):
|
| 479 |
print(f"User message received: {user_message}")
|
| 480 |
+
|
| 481 |
+
# Skip if message is empty (no text and no files)
|
| 482 |
if not user_message or (not user_message.get("text") and not user_message.get("files")):
|
| 483 |
print("Empty message, skipping")
|
| 484 |
return history
|
| 485 |
|
| 486 |
+
# Prepare multimodal message format
|
| 487 |
text_content = user_message.get("text", "").strip()
|
| 488 |
files = user_message.get("files", [])
|
| 489 |
|
| 490 |
print(f"Text content: {text_content}")
|
| 491 |
print(f"Files: {files}")
|
| 492 |
|
| 493 |
+
# If both text and files are empty, skip
|
| 494 |
if not text_content and not files:
|
| 495 |
print("No content to display")
|
| 496 |
return history
|
| 497 |
|
| 498 |
+
# Add message with images to history
|
| 499 |
if files and len(files) > 0:
|
| 500 |
+
# Add text message first if it exists
|
| 501 |
if text_content:
|
| 502 |
print(f"Adding text message: {text_content}")
|
| 503 |
history.append([text_content, None])
|
| 504 |
|
| 505 |
+
# Then add each image file separately
|
| 506 |
for file_path in files:
|
| 507 |
if file_path and isinstance(file_path, str):
|
| 508 |
print(f"Adding image: {file_path}")
|
|
|
|
| 510 |
|
| 511 |
return history
|
| 512 |
else:
|
| 513 |
+
# For text-only messages
|
| 514 |
print(f"Adding text-only message: {text_content}")
|
| 515 |
history.append([text_content, None])
|
| 516 |
return history
|
| 517 |
|
| 518 |
+
# Define bot response function
|
| 519 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
| 520 |
if not history or len(history) == 0:
|
| 521 |
print("No history to process")
|
|
|
|
| 545 |
|
| 546 |
if is_image:
|
| 547 |
for response in respond(
|
| 548 |
+
text_context,
|
| 549 |
+
[image_path],
|
| 550 |
+
history[:-1],
|
| 551 |
+
system_msg,
|
| 552 |
+
max_tokens,
|
| 553 |
+
temperature,
|
| 554 |
+
top_p,
|
| 555 |
+
freq_penalty,
|
| 556 |
+
seed,
|
| 557 |
+
provider,
|
| 558 |
+
api_key,
|
| 559 |
+
custom_model,
|
| 560 |
+
search_term,
|
| 561 |
+
selected_model
|
| 562 |
):
|
| 563 |
history[-1][1] = response
|
| 564 |
yield history
|
| 565 |
else:
|
| 566 |
for response in respond(
|
| 567 |
+
text_content,
|
| 568 |
+
None,
|
| 569 |
+
history[:-1],
|
| 570 |
+
system_msg,
|
| 571 |
+
max_tokens,
|
| 572 |
+
temperature,
|
| 573 |
+
top_p,
|
| 574 |
+
freq_penalty,
|
| 575 |
+
seed,
|
| 576 |
+
provider,
|
| 577 |
+
api_key,
|
| 578 |
+
custom_model,
|
| 579 |
+
search_term,
|
| 580 |
+
selected_model
|
| 581 |
):
|
| 582 |
history[-1][1] = response
|
| 583 |
yield history
|
| 584 |
|
| 585 |
+
# Event handlers
|
| 586 |
+
msg.submit(
|
| 587 |
+
user,
|
| 588 |
+
[msg, chatbot],
|
| 589 |
+
[chatbot],
|
| 590 |
+
queue=False
|
| 591 |
+
).then(
|
| 592 |
+
bot,
|
| 593 |
+
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
| 594 |
+
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
| 595 |
+
model_search_box, featured_model_radio],
|
| 596 |
+
[chatbot]
|
| 597 |
+
).then(
|
| 598 |
+
lambda: {"text": "", "files": []},
|
| 599 |
+
None,
|
| 600 |
+
[msg]
|
| 601 |
+
)
|
| 602 |
|
| 603 |
+
model_search_box.change(
|
| 604 |
+
fn=filter_models,
|
| 605 |
+
inputs=model_search_box,
|
| 606 |
+
outputs=featured_model_radio
|
| 607 |
+
)
|
| 608 |
print("Model search box change event linked.")
|
| 609 |
|
| 610 |
+
featured_model_radio.change(
|
| 611 |
+
fn=set_custom_model_from_radio,
|
| 612 |
+
inputs=featured_model_radio,
|
| 613 |
+
outputs=custom_model_box
|
| 614 |
+
)
|
| 615 |
print("Featured model radio button change event linked.")
|
| 616 |
+
|
| 617 |
+
byok_textbox.change(
|
| 618 |
+
fn=validate_provider,
|
| 619 |
+
inputs=[byok_textbox, provider_radio],
|
| 620 |
+
outputs=provider_radio
|
| 621 |
+
)
|
| 622 |
print("BYOK textbox change event linked.")
|
| 623 |
|
| 624 |
+
provider_radio.change(
|
| 625 |
+
fn=validate_provider,
|
| 626 |
+
inputs=[byok_textbox, provider_radio],
|
| 627 |
+
outputs=provider_radio
|
| 628 |
+
)
|
| 629 |
print("Provider radio button change event linked.")
|
| 630 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
print("Gradio interface initialized.")
|
| 632 |
|
| 633 |
if __name__ == "__main__":
|
| 634 |
print("Launching the demo application.")
|
| 635 |
+
demo.launch(show_api=True, mcp_server=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|