File size: 67,200 Bytes
19a37f3 b3ae1ba adf895d 4add2a4 574e025 964c38f 19a37f3 c730636 aa2cd6e c730636 4853dce c730636 ee1c18d fdd5b1f 7c1a6bf aa2cd6e ee1c18d 0c80777 77fd5a2 c730636 f4462c5 c730636 ed7ddca c730636 ed7ddca c730636 ed7ddca c730636 ed7ddca c730636 ed7ddca c730636 ed7ddca c730636 ee1c18d c730636 9e4885c 1b92bc9 9e4885c b3ae1ba c730636 b3ae1ba c730636 b3ae1ba c730636 b3ae1ba c730636 b3ae1ba c730636 8ef3df1 b3ae1ba 8ef3df1 b3ae1ba c730636 fdd5b1f c730636 fdd5b1f c730636 ed7ddca c730636 fdd5b1f c730636 fdd5b1f c730636 ee1c18d c730636 b3ae1ba c730636 b3ae1ba fdd5b1f b3ae1ba fdd5b1f b3ae1ba fdd5b1f c730636 ed7ddca c730636 ed7ddca fdd5b1f adf895d b3ae1ba cbbe438 c730636 1b92bc9 c730636 8ef3df1 b3ae1ba 8ef3df1 b3ae1ba c730636 fdd5b1f c730636 fdd5b1f c730636 ed7ddca c730636 ed7ddca c730636 ed7ddca c730636 ed7ddca fdd5b1f ed7ddca fdd5b1f c730636 ed7ddca c730636 ee1c18d b3ae1ba c730636 ed7ddca b3ae1ba ed7ddca fdd5b1f b3ae1ba fdd5b1f c730636 63e7ff5 c730636 cbbe438 c730636 8ef3df1 b3ae1ba 8ef3df1 c730636 fdd5b1f c730636 fdd5b1f c730636 fdd5b1f c730636 fdd5b1f c730636 fdd5b1f c730636 f4462c5 574e025 f4462c5 574e025 d265e96 f4462c5 a455050 1b92bc9 675e6f3 f4462c5 1b92bc9 f4462c5 208563c 574e025 f4462c5 b3ae1ba 1b92bc9 f4462c5 675e6f3 f4462c5 fdd5b1f f4462c5 fdd5b1f f4462c5 d6038df f4462c5 fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df f4462c5 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 29a6b18 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 5ba3759 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 5ba3759 77fd5a2 5ba3759 77fd5a2 5ba3759 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 c730636 f4462c5 c730636 b3ae1ba c730636 4c3fbd3 b3ae1ba c730636 b3ae1ba c730636 c92323a b3ae1ba c92323a c730636 b3ae1ba 1b92bc9 c730636 adc22db c730636 b3ae1ba c730636 adf895d c730636 4c3fbd3 c730636 ed7ddca adf895d c92323a 29a6b18 c92323a c730636 1b92bc9 b3ae1ba c730636 adc22db c730636 63e7ff5 c730636 4c3fbd3 1bdb7e1 c730636 c92323a 1e55af1 c92323a 8d5ec93 b3ae1ba 8d5ec93 adc22db c730636 4c3fbd3 f732b24 4c3fbd3 f732b24 4c3fbd3 19a37f3 4c3fbd3 f732b24 4c3fbd3 db1adf2 4c3fbd3 f732b24 4c3fbd3 f4462c5 574e025 f4462c5 d265e96 f4462c5 4c3fbd3 574e025 f4462c5 adc22db f4462c5 29a6b18 f4462c5 1b92bc9 b3ae1ba 86c62a8 f4462c5 adc22db f4462c5 29a6b18 19a37f3 29a6b18 19a37f3 4853dce 19a37f3 4853dce 19a37f3 4853dce 19a37f3 4853dce 19a37f3 29a6b18 19a37f3 29a6b18 19a37f3 29a6b18 19a37f3 77fd5a2 aa2cd6e cd28068 aa2cd6e d265e96 aa2cd6e cd28068 aa2cd6e 1b92bc9 aa2cd6e 21ba6d1 aa2cd6e fdd5b1f aa2cd6e fdd5b1f aa2cd6e cd28068 aa2cd6e fdd5b1f aa2cd6e cd28068 aa2cd6e 3fbb4bd fdd5b1f aa2cd6e cd28068 d265e96 aa2cd6e 4c3fbd3 aa2cd6e 4c3fbd3 aa2cd6e 4c3fbd3 aa2cd6e 1bdb7e1 cd28068 aa2cd6e 29a6b18 aa2cd6e 1b92bc9 b3ae1ba 1b92bc9 b3ae1ba aa2cd6e adc22db 57c8ad1 aa2cd6e 12e0f66 0c80777 12e0f66 1b92bc9 12e0f66 fdd5b1f 12e0f66 fdd5b1f 12e0f66 fdd5b1f 12e0f66 3fbb4bd fdd5b1f 12e0f66 4c3fbd3 12e0f66 4beb2ea 12e0f66 29a6b18 12e0f66 1b92bc9 b3ae1ba 12e0f66 b3ae1ba 12e0f66 adc22db 57c8ad1 12e0f66 e892648 57c8ad1 e892648 57c8ad1 e892648 57c8ad1 e892648 57c8ad1 e892648 f732b24 c730636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 |
# Purpose: One Space that offers up to seven tools/tabs (all exposed as MCP tools):
# 1) Fetch — convert webpages to clean Markdown format
# 2) DuckDuckGo Search — compact JSONL search output (short keys to minimize tokens)
# 3) Python Code Executor — run Python code and capture stdout/errors
# 4) Kokoro TTS — synthesize speech from text using Kokoro-82M with 54 voice options
# 5) Memory Manager — lightweight JSON-based local memory store
# 6) Image Generation - HF serverless inference providers (requires HF_READ_TOKEN)
# 7) Video Generation - HF serverless inference providers (requires HF_READ_TOKEN)
from __future__ import annotations
import re
import json
import sys
import os
import random
from io import StringIO
from typing import List, Dict, Tuple, Annotated, Literal, Optional
import gradio as gr
import requests
from bs4 import BeautifulSoup
from markdownify import markdownify as md
from readability import Document
from urllib.parse import urlparse
from ddgs import DDGS
from PIL import Image
from huggingface_hub import InferenceClient
import time
import tempfile
import uuid
import threading
from datetime import datetime
# Optional imports for Kokoro TTS (loaded lazily)
import numpy as np
try:
import torch # type: ignore
except Exception: # pragma: no cover - optional dependency
torch = None # type: ignore
try:
from kokoro import KModel, KPipeline # type: ignore
except Exception: # pragma: no cover - optional dependency
KModel = None # type: ignore
KPipeline = None # type: ignore
# ==============================
# Fetch: Enhanced HTTP + extraction utils
# ==============================
def _http_get_enhanced(url: str) -> requests.Response:
"""
Download the page with enhanced headers, timeout handling, and better error recovery.
"""
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Accept-Language": "en-US,en;q=0.9",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Accept-Encoding": "gzip, deflate, br",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1",
}
# Apply rate limiting
_fetch_rate_limiter.acquire()
try:
response = requests.get(
url,
headers=headers,
timeout=30, # Increased timeout
allow_redirects=True,
stream=False
)
response.raise_for_status()
return response
except requests.exceptions.Timeout:
raise requests.exceptions.RequestException("Request timed out. The webpage took too long to respond.")
except requests.exceptions.ConnectionError:
raise requests.exceptions.RequestException("Connection error. Please check the URL and your internet connection.")
except requests.exceptions.HTTPError as e:
if response.status_code == 403:
raise requests.exceptions.RequestException("Access forbidden. The website may be blocking automated requests.")
elif response.status_code == 404:
raise requests.exceptions.RequestException("Page not found. Please check the URL.")
elif response.status_code == 429:
raise requests.exceptions.RequestException("Rate limited. Please try again in a few minutes.")
else:
raise requests.exceptions.RequestException(f"HTTP error {response.status_code}: {str(e)}")
def _normalize_whitespace(text: str) -> str:
"""
Squeeze extra spaces and blank lines to keep things compact.
(Layman's terms: tidy up the text so it’s not full of weird spacing.)
"""
text = re.sub(r"[ \t\u00A0]+", " ", text)
text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text.strip())
return text.strip()
def _truncate(text: str, max_chars: int) -> Tuple[str, bool]:
"""
Cut text if it gets too long; return the text and whether we trimmed.
(Layman's terms: shorten long text and tell us if we had to cut it.)
"""
if max_chars is None or max_chars <= 0 or len(text) <= max_chars:
return text, False
return text[:max_chars].rstrip() + " …", True
def _shorten(text: str, limit: int) -> str:
"""
Hard cap a string with an ellipsis to keep tokens small.
(Layman's terms: force a string to a max length with an ellipsis.)
"""
if limit <= 0 or len(text) <= limit:
return text
return text[: max(0, limit - 1)].rstrip() + "…"
def _domain_of(url: str) -> str:
"""
Show a friendly site name like "example.com".
(Layman's terms: pull the website's domain.)
"""
try:
return urlparse(url).netloc or ""
except Exception:
return ""
def _meta(soup: BeautifulSoup, name: str) -> str | None:
tag = soup.find("meta", attrs={"name": name})
return tag.get("content") if tag and tag.has_attr("content") else None
def _og(soup: BeautifulSoup, prop: str) -> str | None:
tag = soup.find("meta", attrs={"property": prop})
return tag.get("content") if tag and tag.has_attr("content") else None
def _extract_metadata(soup: BeautifulSoup, final_url: str) -> Dict[str, str]:
"""
Pull the useful bits: title, description, site name, canonical URL, language, etc.
(Layman's terms: gather page basics like title/description/address.)
"""
meta: Dict[str, str] = {}
# Title preference: <title> > og:title > twitter:title
title_candidates = [
(soup.title.string if soup.title and soup.title.string else None),
_og(soup, "og:title"),
_meta(soup, "twitter:title"),
]
meta["title"] = next((t.strip() for t in title_candidates if t and t.strip()), "")
# Description preference: description > og:description > twitter:description
desc_candidates = [
_meta(soup, "description"),
_og(soup, "og:description"),
_meta(soup, "twitter:description"),
]
meta["description"] = next((d.strip() for d in desc_candidates if d and d.strip()), "")
# Canonical link (helps dedupe)
link_canonical = soup.find("link", rel=lambda v: v and "canonical" in v)
meta["canonical"] = (link_canonical.get("href") or "").strip() if link_canonical else ""
# Site name + language info if present
meta["site_name"] = (_og(soup, "og:site_name") or "").strip()
html_tag = soup.find("html")
meta["lang"] = (html_tag.get("lang") or "").strip() if html_tag else ""
# Final URL + domain
meta["fetched_url"] = final_url
meta["domain"] = _domain_of(final_url)
return meta
def _extract_main_text(html: str) -> Tuple[str, BeautifulSoup]:
"""
Use Readability to isolate the main article and turn it into clean text.
Returns (clean_text, soup_of_readable_html).
(Layman's terms: find the real article text and clean it.)
"""
# Simplified article HTML from Readability
doc = Document(html)
readable_html = doc.summary(html_partial=True)
# Parse simplified HTML
s = BeautifulSoup(readable_html, "lxml")
# Remove noisy tags
for sel in ["script", "style", "noscript", "iframe", "svg"]:
for tag in s.select(sel):
tag.decompose()
# Keep paragraphs, list items, and subheadings for structure without bloat
text_parts: List[str] = []
for p in s.find_all(["p", "li", "h2", "h3", "h4", "blockquote"]):
chunk = p.get_text(" ", strip=True)
if chunk:
text_parts.append(chunk)
clean_text = _normalize_whitespace("\n\n".join(text_parts))
return clean_text, s
def _fullpage_markdown_from_soup(full_soup: BeautifulSoup, base_url: str) -> str:
# Remove unwanted elements globally first
for element in full_soup.select("script, style, nav, footer, header, aside"):
element.decompose()
# Try common main-content containers, then fallback to body
main = (
full_soup.find("main")
or full_soup.find("article")
or full_soup.find("div", class_=re.compile(r"content|main|post|article", re.I))
or full_soup.find("body")
)
if not main:
return "No main content found on the webpage."
# Convert selected HTML to Markdown
markdown_text = md(str(main), heading_style="ATX")
# Clean up the markdown similar to web-scraper
markdown_text = re.sub(r"\n{3,}", "\n\n", markdown_text)
markdown_text = re.sub(r"\[\s*\]\([^)]*\)", "", markdown_text) # empty links
markdown_text = re.sub(r"[ \t]+", " ", markdown_text)
markdown_text = markdown_text.strip()
# Add title if present
title = full_soup.find("title")
if title and title.get_text(strip=True):
markdown_text = f"# {title.get_text(strip=True)}\n\n{markdown_text}"
return markdown_text or "No content could be extracted."
def _truncate_markdown(markdown: str, max_chars: int) -> str:
"""
Truncate markdown content to a maximum character count while preserving structure.
Tries to break at paragraph boundaries when possible.
"""
if len(markdown) <= max_chars:
return markdown
# Find a good break point near the limit
truncated = markdown[:max_chars]
# Try to break at the end of a paragraph (double newline)
last_paragraph = truncated.rfind('\n\n')
if last_paragraph > max_chars * 0.7: # If we find a paragraph break in the last 30%
truncated = truncated[:last_paragraph]
# Try to break at the end of a sentence
elif '.' in truncated[-100:]: # Look for a period in the last 100 chars
last_period = truncated.rfind('.')
if last_period > max_chars * 0.8: # If we find a period in the last 20%
truncated = truncated[:last_period + 1]
return truncated.rstrip() + "\n\n> *[Content truncated for brevity]*"
def Fetch_Webpage( # <-- MCP tool #1 (Fetch)
url: Annotated[str, "The absolute URL to fetch (must return HTML)."],
verbosity: Annotated[str, "Controls output length: 'Brief' (1000 chars), 'Standard' (3000 chars), or 'Full' (complete page)."] = "Standard",
) -> str:
"""
Fetch a web page and return it converted to Markdown format with configurable length.
This function retrieves a webpage and converts its main content to clean Markdown,
preserving headings, formatting, and structure. It automatically removes navigation,
footers, scripts, and other non-content elements to focus on the main article or
content area.
Args:
url (str): The absolute URL to fetch (must return HTML).
verbosity (str): Controls output length:
- "Brief": Truncate to 1000 characters for quick summaries
- "Standard": Truncate to 3000 characters for balanced content
- "Full": Return complete page content with no length limit
Returns:
str: The webpage content converted to Markdown format with:
- Page title as H1 header
- Main content converted to clean Markdown
- Preserved heading hierarchy
- Clean formatting without navigation/sidebar elements
- Length controlled by verbosity setting
"""
_log_call_start("Fetch_Webpage", url=url, verbosity=verbosity)
if not url or not url.strip():
result = "Please enter a valid URL."
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
try:
resp = _http_get_enhanced(url)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
result = f"An error occurred: {e}"
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
final_url = str(resp.url)
ctype = resp.headers.get("Content-Type", "")
if "html" not in ctype.lower():
result = f"Unsupported content type for extraction: {ctype or 'unknown'}"
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
# Decode to text
resp.encoding = resp.encoding or resp.apparent_encoding
html = resp.text
# Parse HTML and convert to full-page Markdown
full_soup = BeautifulSoup(html, "lxml")
markdown_content = _fullpage_markdown_from_soup(full_soup, final_url)
# Apply verbosity-based truncation
if verbosity == "Brief":
result = _truncate_markdown(markdown_content, 1000)
elif verbosity == "Standard":
result = _truncate_markdown(markdown_content, 3000)
else: # "Full"
result = markdown_content
_log_call_end("Fetch_Webpage", f"markdown_chars={len(result)}")
return result
# ============================================
# DuckDuckGo Search: Enhanced with error handling & rate limiting
# ============================================
import asyncio
from datetime import datetime, timedelta
class RateLimiter:
def __init__(self, requests_per_minute: int = 30):
self.requests_per_minute = requests_per_minute
self.requests = []
def acquire(self):
"""Synchronous rate limiting for non-async context"""
now = datetime.now()
# Remove requests older than 1 minute
self.requests = [
req for req in self.requests if now - req < timedelta(minutes=1)
]
if len(self.requests) >= self.requests_per_minute:
# Wait until we can make another request
wait_time = 60 - (now - self.requests[0]).total_seconds()
if wait_time > 0:
time.sleep(max(1, wait_time)) # At least 1 second wait
self.requests.append(now)
# Global rate limiters
_search_rate_limiter = RateLimiter(requests_per_minute=20)
_fetch_rate_limiter = RateLimiter(requests_per_minute=25)
# ==============================
# Logging Helpers (print I/O to terminal)
# ==============================
def _truncate_for_log(value: str, limit: int = 500) -> str:
"""Truncate long strings for concise terminal logging."""
if len(value) <= limit:
return value
return value[:limit - 1] + "…"
def _serialize_input(val): # type: ignore[return-any]
"""Best-effort compact serialization of arbitrary input values for logging."""
try:
if isinstance(val, (str, int, float, bool)) or val is None:
return val
if isinstance(val, (list, tuple)):
return [_serialize_input(v) for v in list(val)[:10]] + (["…"] if len(val) > 10 else []) # type: ignore[index]
if isinstance(val, dict):
out = {}
for i, (k, v) in enumerate(val.items()):
if i >= 12:
out["…"] = "…"
break
out[str(k)] = _serialize_input(v)
return out
return repr(val)[:120]
except Exception:
return "<unserializable>"
def _log_call_start(func_name: str, **kwargs) -> None:
try:
compact = {k: _serialize_input(v) for k, v in kwargs.items()}
print(f"[TOOL CALL] {func_name} inputs: {json.dumps(compact, ensure_ascii=False)[:800]}", flush=True)
except Exception as e: # pragma: no cover - logging safety
print(f"[TOOL CALL] {func_name} (failed to log inputs: {e})", flush=True)
def _log_call_end(func_name: str, output_desc: str) -> None:
try:
print(f"[TOOL RESULT] {func_name} output: {output_desc}", flush=True)
except Exception as e: # pragma: no cover
print(f"[TOOL RESULT] {func_name} (failed to log output: {e})", flush=True)
def Search_DuckDuckGo( # <-- MCP tool #2 (DDG Search)
query: Annotated[str, "The search query (supports operators like site:, quotes, OR)."],
max_results: Annotated[int, "Number of results to return (1–20)."] = 5,
) -> str:
"""
Run a DuckDuckGo search and return numbered results with URLs, titles, and summaries.
Args:
query (str): The search query string. Supports operators like site:, quotes for exact matching,
OR for alternatives, and other DuckDuckGo search syntax.
Examples:
- Basic search: "Python programming"
- Site search: "site:example.com"
- Exact phrase: "artificial intelligence"
- Exclude terms: "cats -dogs"
max_results (int): Number of results to return (1–20). Default: 5.
Returns:
str: Search results in readable format with titles, URLs, and snippets as a numbered list.
"""
_log_call_start("Search_DuckDuckGo", query=query, max_results=max_results)
if not query or not query.strip():
result = "No search query provided. Please enter a search term."
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
# Validate max_results
max_results = max(1, min(20, max_results))
try:
# Apply rate limiting to avoid being blocked
_search_rate_limiter.acquire()
# Perform search with timeout handling
with DDGS() as ddgs:
raw = ddgs.text(query, max_results=max_results)
except Exception as e:
error_msg = f"Search failed: {str(e)[:200]}"
if "blocked" in str(e).lower() or "rate" in str(e).lower():
error_msg = "Search temporarily blocked due to rate limiting. Please try again in a few minutes."
elif "timeout" in str(e).lower():
error_msg = "Search timed out. Please try again with a simpler query."
elif "network" in str(e).lower() or "connection" in str(e).lower():
error_msg = "Network connection error. Please check your internet connection and try again."
result = f"Error: {error_msg}"
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
if not raw:
result = f"No results found for query: {query}"
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
results = []
for r in raw or []:
title = (r.get("title") or "").strip()
url = (r.get("href") or r.get("link") or "").strip()
body = (r.get("body") or r.get("snippet") or "").strip()
if not url:
continue
result_obj = {
"title": title or _domain_of(url),
"url": url,
"snippet": body
}
results.append(result_obj)
if not results:
result = f"No valid results found for query: {query}"
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
# Format output in readable format
lines = [f"Found {len(results)} search results for: {query}\n"]
for i, result in enumerate(results, 1):
lines.append(f"{i}. {result['title']}")
lines.append(f" URL: {result['url']}")
if result['snippet']:
lines.append(f" Summary: {result['snippet']}")
lines.append("") # Empty line between results
result = "\n".join(lines)
_log_call_end("Search_DuckDuckGo", f"results={len(results)} chars={len(result)}")
return result
# ======================================
# Code Execution: Python (MCP tool #3)
# ======================================
def Execute_Python(code: Annotated[str, "Python source code to run; stdout is captured and returned."]) -> str:
"""
Execute arbitrary Python code and return captured stdout or an error message.
Args:
code (str): Python source code to run; stdout is captured and returned.
Returns:
str: Combined stdout produced by the code, or the exception text if
execution failed.
"""
_log_call_start("Execute_Python", code=_truncate_for_log(code or "", 300))
if code is None:
result = "No code provided."
_log_call_end("Execute_Python", result)
return result
old_stdout = sys.stdout
redirected_output = sys.stdout = StringIO()
try:
exec(code)
result = redirected_output.getvalue()
except Exception as e:
result = str(e)
finally:
sys.stdout = old_stdout
_log_call_end("Execute_Python", _truncate_for_log(result))
return result
# ==========================
# Kokoro TTS (MCP tool #4)
# ==========================
_KOKORO_STATE = {
"initialized": False,
"device": "cpu",
"model": None,
"pipelines": {},
}
def get_kokoro_voices():
"""Get comprehensive list of available Kokoro voice IDs (54 total)."""
try:
from huggingface_hub import list_repo_files
# Get voice files from the Kokoro repository
files = list_repo_files('hexgrad/Kokoro-82M')
voice_files = [f for f in files if f.endswith('.pt') and f.startswith('voices/')]
voices = [f.replace('voices/', '').replace('.pt', '') for f in voice_files]
return sorted(voices) if voices else _get_fallback_voices()
except Exception:
return _get_fallback_voices()
def _get_fallback_voices():
"""Return comprehensive fallback list of known Kokoro voices (54 total)."""
return [
# American Female (11 voices)
"af_alloy", "af_aoede", "af_bella", "af_heart", "af_jessica",
"af_kore", "af_nicole", "af_nova", "af_river", "af_sarah", "af_sky",
# American Male (9 voices)
"am_adam", "am_echo", "am_eric", "am_fenrir", "am_liam",
"am_michael", "am_onyx", "am_puck", "am_santa",
# British Female (4 voices)
"bf_alice", "bf_emma", "bf_isabella", "bf_lily",
# British Male (4 voices)
"bm_daniel", "bm_fable", "bm_george", "bm_lewis",
# European Female/Male (3 voices)
"ef_dora", "em_alex", "em_santa",
# French Female (1 voice)
"ff_siwis",
# Hindi Female/Male (4 voices)
"hf_alpha", "hf_beta", "hm_omega", "hm_psi",
# Italian Female/Male (2 voices)
"if_sara", "im_nicola",
# Japanese Female/Male (5 voices)
"jf_alpha", "jf_gongitsune", "jf_nezumi", "jf_tebukuro", "jm_kumo",
# Portuguese Female/Male (3 voices)
"pf_dora", "pm_alex", "pm_santa",
# Chinese Female/Male (8 voices)
"zf_xiaobei", "zf_xiaoni", "zf_xiaoxiao", "zf_xiaoyi",
"zm_yunjian", "zm_yunxi", "zm_yunxia", "zm_yunyang"
]
def _init_kokoro() -> None:
"""Lazy-initialize Kokoro model and pipelines on first use.
Tries CUDA if torch is present and available; falls back to CPU. Keeps a
minimal English pipeline and custom lexicon tweak for the word "kokoro".
"""
if _KOKORO_STATE["initialized"]:
return
if KModel is None or KPipeline is None:
raise RuntimeError(
"Kokoro is not installed. Please install the 'kokoro' package (>=0.9.4)."
)
device = "cpu"
if torch is not None:
try:
if torch.cuda.is_available(): # type: ignore[attr-defined]
device = "cuda"
except Exception:
device = "cpu"
model = KModel().to(device).eval()
pipelines = {"a": KPipeline(lang_code="a", model=False)}
# Custom pronunciation
try:
pipelines["a"].g2p.lexicon.golds["kokoro"] = "kˈOkəɹO"
except Exception:
pass
_KOKORO_STATE.update(
{
"initialized": True,
"device": device,
"model": model,
"pipelines": pipelines,
}
)
def List_Kokoro_Voices() -> List[str]:
"""
Get a list of all available Kokoro voice identifiers.
This MCP tool helps clients discover the 54 available voice options
for the Generate_Speech tool.
Returns:
List[str]: A list of voice identifiers (e.g., ["af_heart", "am_adam", "bf_alice", ...])
Voice naming convention:
- First 2 letters: Language/Region (af=American Female, am=American Male, bf=British Female, etc.)
- Following letters: Voice name (heart, adam, alice, etc.)
Available categories:
- American Female/Male (20 voices)
- British Female/Male (8 voices)
- European Female/Male (3 voices)
- French Female (1 voice)
- Hindi Female/Male (4 voices)
- Italian Female/Male (2 voices)
- Japanese Female/Male (5 voices)
- Portuguese Female/Male (3 voices)
- Chinese Female/Male (8 voices)
"""
return get_kokoro_voices()
def Generate_Speech( # <-- MCP tool #4 (Generate Speech)
text: Annotated[str, "The text to synthesize (English)."],
speed: Annotated[float, "Speech speed multiplier in 0.5–2.0; 1.0 = normal speed."] = 1.25,
voice: Annotated[str, "Voice identifier from 54 available options."] = "af_heart",
) -> Tuple[int, np.ndarray]:
"""
Synthesize speech from text using the Kokoro-82M TTS model.
This function returns raw audio suitable for a Gradio Audio component and is
also exposed as an MCP tool. It supports 54 different voices across multiple
languages and accents including American, British, European, Hindi, Italian,
Japanese, Portuguese, and Chinese speakers.
Args:
text (str): The text to synthesize. Works best with English but supports multiple languages.
speed (float): Speech speed multiplier in 0.5–2.0; 1.0 = normal speed. Default: 1.25 (slightly brisk).
voice (str): Voice identifier from 54 available options. Default: 'af_heart'.
Returns:
A tuple of (sample_rate_hz, audio_waveform) where:
- sample_rate_hz: int sample rate in Hz (24_000)
- audio_waveform: numpy.ndarray float32 mono waveform in range [-1, 1]
"""
_log_call_start("Generate_Speech", text=_truncate_for_log(text, 200), speed=speed, voice=voice)
if not text or not text.strip():
try:
_log_call_end("Generate_Speech", "error=empty text")
finally:
pass
raise gr.Error("Please provide non-empty text to synthesize.")
_init_kokoro()
model = _KOKORO_STATE["model"]
pipelines = _KOKORO_STATE["pipelines"]
pipeline = pipelines.get("a")
if pipeline is None:
raise gr.Error("Kokoro English pipeline not initialized.")
# Process ALL segments for longer audio generation
audio_segments = []
pack = pipeline.load_voice(voice)
try:
# Get all segments first to show progress for long text
segments = list(pipeline(text, voice, speed))
total_segments = len(segments)
# Iterate through ALL segments instead of just the first one
for segment_idx, (text_chunk, ps, _) in enumerate(segments):
ref_s = pack[len(ps) - 1]
try:
audio = model(ps, ref_s, float(speed))
audio_segments.append(audio.detach().cpu().numpy())
# For very long text (>10 segments), show progress every few segments
if total_segments > 10 and (segment_idx + 1) % 5 == 0:
print(f"Progress: Generated {segment_idx + 1}/{total_segments} segments...")
except Exception as e:
raise gr.Error(f"Error generating audio for segment {segment_idx + 1}: {str(e)}")
if not audio_segments:
raise gr.Error("No audio was generated (empty synthesis result).")
# Concatenate all segments to create the complete audio
if len(audio_segments) == 1:
final_audio = audio_segments[0]
else:
final_audio = np.concatenate(audio_segments, axis=0)
# For multi-segment audio, provide completion info
duration = len(final_audio) / 24_000
if total_segments > 1:
print(f"Completed: {total_segments} segments concatenated into {duration:.1f} seconds of audio")
# Success logging & return
_log_call_end("Generate_Speech", f"samples={final_audio.shape[0]} duration_sec={len(final_audio)/24_000:.2f}")
return 24_000, final_audio
except gr.Error as e:
_log_call_end("Generate_Speech", f"gr_error={str(e)}")
raise # Re-raise
except Exception as e:
_log_call_end("Generate_Speech", f"error={str(e)[:120]}")
raise gr.Error(f"Error during speech generation: {str(e)}")
# ==========================
# JSON Memory System (MCP tools #7–#10 if enabled)
# ==========================
# Implementation goals (aligned with Gradio MCP docs):
# * Each function has a rich docstring (used for tool description)
# * Type hints + Annotated param docs become the schema
# * Zero external dependencies (pure stdlib JSON file persistence)
# * Safe concurrent access via a process‑local lock
# * Human‑readable & recoverable even if file becomes corrupted
MEMORY_FILE = os.path.join(os.path.dirname(__file__), "memories.json")
_MEMORY_LOCK = threading.RLock()
_MAX_MEMORIES = 10_000 # soft cap to avoid unbounded growth
def _now_iso() -> str:
return datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
def _load_memories() -> List[Dict[str, str]]:
"""Internal helper: load memory list from disk.
Returns an empty list if the file does not exist or is unreadable.
If the JSON is corrupted, a *.corrupt backup is written once and a
fresh empty list is returned (fail‑open philosophy for tool usage).
"""
if not os.path.exists(MEMORY_FILE):
return []
try:
with open(MEMORY_FILE, "r", encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, list):
# Filter only dict items containing required keys if present
cleaned: List[Dict[str, str]] = []
for item in data:
if isinstance(item, dict) and "id" in item and "text" in item:
cleaned.append(item)
return cleaned
return []
except Exception:
# Backup corrupted file once
try:
backup = MEMORY_FILE + ".corrupt"
if not os.path.exists(backup):
os.replace(MEMORY_FILE, backup)
except Exception:
pass
return []
def _save_memories(memories: List[Dict[str, str]]) -> None:
"""Persist memory list atomically to disk (write temp then replace)."""
tmp_path = MEMORY_FILE + ".tmp"
with open(tmp_path, "w", encoding="utf-8") as f:
json.dump(memories, f, ensure_ascii=False, indent=2)
os.replace(tmp_path, MEMORY_FILE)
def _mem_save(
text: Annotated[str, "Raw textual content to remember (will be stored verbatim)."],
tags: Annotated[str, "Optional comma-separated tags for lightweight categorization (e.g. 'user, preference')."] = "",
) -> str:
"""(Internal) Persist a new memory record.
Summary:
Adds a memory object to the local JSON store (no external database).
Stored Fields:
- id (str, UUID4)
- text (str, verbatim user content)
- timestamp (UTC "YYYY-MM-DD HH:MM:SS")
- tags (str, original comma-separated tag string)
Behavior / Rules:
1. Whitespace is trimmed; empty text is rejected.
2. If the most recent existing memory has identical text, the new one is skipped (light dedupe heuristic).
3. When total entries exceed _MAX_MEMORIES, oldest entries are pruned (soft cap).
4. Operation is protected by an in‑process reentrant lock only (no cross‑process locking).
Returns:
str: Human readable confirmation containing the new memory UUID (full or prefix
Security / Privacy:
Data is plaintext JSON on local disk; do NOT store secrets or regulated data.
"""
text_clean = (text or "").strip()
if not text_clean:
return "Error: memory text is empty."
with _MEMORY_LOCK:
memories = _load_memories()
if memories and memories[-1].get("text") == text_clean:
return "Skipped: identical to last stored memory."
mem_id = str(uuid.uuid4())
entry = {
"id": mem_id,
"text": text_clean,
"timestamp": _now_iso(),
"tags": tags.strip(),
}
memories.append(entry)
if len(memories) > _MAX_MEMORIES:
# Drop oldest overflow
overflow = len(memories) - _MAX_MEMORIES
memories = memories[overflow:]
_save_memories(memories)
return f"Memory saved: {mem_id}"
def _mem_list(
limit: Annotated[int, "Maximum number of most recent memories to return (1–200)."] = 20,
include_tags: Annotated[bool, "If true, include tags column in output."] = True,
) -> str:
"""(Internal) List most recent memories.
Parameters:
limit (int): Max rows to return; clamped to [1, 200].
include_tags (bool): Include tags section when True.
Output Format (one per line):
<uuid_prefix> [YYYY-MM-DD HH:MM:SS] <text> | tags: <tag list>
(Tag column omitted if empty or include_tags=False.)
Returns:
str: Joined newline string or a friendly "No memories stored." message.
"""
limit = max(1, min(200, limit))
with _MEMORY_LOCK:
memories = _load_memories()
if not memories:
return "No memories stored yet."
# Already chronological (append order); display newest first
chosen = memories[-limit:][::-1]
lines: List[str] = []
for m in chosen:
base = f"{m['id'][:8]} [{m.get('timestamp','?')}] {m.get('text','')}"
if include_tags and m.get("tags"):
base += f" | tags: {m['tags']}"
lines.append(base)
omitted = len(memories) - len(chosen)
if omitted > 0:
lines.append(f"… ({omitted} older memorie{'s' if omitted!=1 else ''} omitted; total={len(memories)})")
return "\n".join(lines)
def _mem_search(
query: Annotated[str, "Case-insensitive substring search; space-separated terms are ANDed."],
limit: Annotated[int, "Maximum number of matches (1–200)."] = 20,
) -> str:
"""(Internal) Full-text style AND search across text and tags.
Search Semantics:
- Split query on whitespace into individual terms.
- A memory matches only if EVERY term appears (case-insensitive) in the text OR tags field.
- Results are ordered newest-first (descending timestamp).
Parameters:
query (str): Raw user query string; must contain at least one non-space character.
limit (int): Max rows to return; clamped to [1, 200].
Returns:
str: Formatted lines identical to _mem_list output or "No matches".
"""
q = (query or "").strip()
if not q:
return "Error: empty query."
terms = [t.lower() for t in q.split() if t.strip()]
if not terms:
return "Error: no valid search terms."
limit = max(1, min(200, limit))
with _MEMORY_LOCK:
memories = _load_memories()
# Newest first iteration for early cutoff
matches: List[Dict[str, str]] = [] # collected (capped at limit)
total_matches = 0
for m in reversed(memories): # newest backward
hay = (m.get("text", "") + " " + m.get("tags", "")).lower()
if all(t in hay for t in terms):
total_matches += 1
if len(matches) < limit:
matches.append(m)
if not matches:
return f"No matches for: {query}"
lines = [
f"{m['id'][:8]} [{m.get('timestamp','?')}] {m.get('text','')}" + (f" | tags: {m['tags']}" if m.get('tags') else "")
for m in matches
]
omitted = total_matches - len(matches)
if omitted > 0:
lines.append(f"… ({omitted} additional match{'es' if omitted!=1 else ''} omitted; total_matches={total_matches})")
return "\n".join(lines)
def _mem_delete(
memory_id: Annotated[str, "Full UUID or a unique prefix (>=4 chars) of the memory id to delete."],
) -> str:
"""(Internal) Delete one memory by UUID or unique prefix.
Parameters:
memory_id (str): Full UUID4 (preferred) OR a unique prefix (>=4 chars). If prefix is ambiguous, no deletion occurs.
Returns:
str: One of: success message, ambiguity notice, or not-found message.
Safety:
Ambiguous prefixes are rejected to prevent accidental mass deletion.
"""
key = (memory_id or "").strip().lower()
if len(key) < 4:
return "Error: supply at least 4 characters of the id."
with _MEMORY_LOCK:
memories = _load_memories()
matched = [m for m in memories if m["id"].lower().startswith(key)]
if not matched:
return "Memory not found."
if len(matched) > 1 and key != matched[0]["id"].lower():
# ambiguous prefix
sample = ", ".join(m["id"][:8] for m in matched[:5])
more = "…" if len(matched) > 5 else ""
return f"Ambiguous prefix (matches {len(matched)} ids: {sample}{more}). Provide more characters."
# Unique match
target_id = matched[0]["id"]
memories = [m for m in memories if m["id"] != target_id]
_save_memories(memories)
return f"Deleted memory: {target_id}"
# ======================
# UI: four-tab interface
# ======================
# --- Fetch tab (compact controllable extraction) ---
fetch_interface = gr.Interface(
fn=Fetch_Webpage,
inputs=[
gr.Textbox(label="URL", placeholder="https://example.com/article"),
gr.Dropdown(
label="Verbosity",
choices=["Brief", "Standard", "Full"],
value="Standard",
info="Brief: 1000 chars, Standard: 3000 chars, Full: complete page"
),
],
outputs=gr.Markdown(label="Extracted Markdown"),
title="Fetch Webpage",
description=(
"<div style=\"text-align:center\">Convert any webpage to clean Markdown format with configurable length, preserving structure and formatting while removing navigation and clutter.</div>"
),
api_description=(
"Fetch a web page and return it converted to Markdown format with configurable length. "
"Parameters: url (str - absolute URL), verbosity (str - Brief/Standard/Full controlling output length: Brief=1000 chars, Standard=3000 chars, Full=complete page)."
),
flagging_mode="never",
)
# --- Simplified DDG tab (readable output only) ---
concise_interface = gr.Interface(
fn=Search_DuckDuckGo,
inputs=[
gr.Textbox(label="Query", placeholder="topic OR site:example.com"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
],
outputs=gr.Textbox(label="Search Results", interactive=False),
title="DuckDuckGo Search",
description=(
"<div style=\"text-align:center\">Web search with readable output format. Supports advanced search operators.</div>"
),
api_description=(
"Run a DuckDuckGo search and return numbered results with URLs, titles, and summaries. "
"Supports advanced search operators: site: for specific domains, quotes for exact phrases, "
"OR for alternatives, and - to exclude terms. Examples: 'Python programming', 'site:example.com', "
"'\"artificial intelligence\"', 'cats -dogs', 'Python OR JavaScript'."
),
flagging_mode="never",
submit_btn="Search",
)
##
# --- Execute Python tab (simple code interpreter) ---
code_interface = gr.Interface(
fn=Execute_Python,
inputs=gr.Code(label="Python Code", language="python"),
outputs=gr.Textbox(label="Output"),
title="Python Code Executor",
description=(
"<div style=\"text-align:center\">Execute Python code and see the output.</div>"
),
api_description=(
"Execute arbitrary Python code and return captured stdout or an error message. "
"Supports any valid Python code including imports, variables, functions, loops, and calculations. "
"Examples: 'print(2+2)', 'import math; print(math.sqrt(16))', 'for i in range(3): print(i)'. "
"Parameters: code (str - Python source code to execute). "
"Returns: Combined stdout output or exception text if execution fails."
),
flagging_mode="never",
)
CSS_STYLES = """
/* Style only the top-level app title to avoid affecting headings elsewhere */
.app-title {
text-align: center;
/* Ensure main title appears first, then our two subtitle lines */
display: grid;
justify-items: center;
}
/* Place bold tools list on line 2, normal auth note on line 3 (below title) */
.app-title::before {
grid-row: 2;
content: "Fetch Webpage | Search DuckDuckGo | Python Interpreter | Memory Manager | Kokoro TTS | Image Generation | Video Generation";
display: block;
font-size: 1rem;
font-weight: 700;
opacity: 0.9;
margin-top: 6px;
white-space: pre-wrap;
}
.app-title::after {
grid-row: 3;
content: "General purpose tools useful for any agent.";
display: block;
font-size: 1rem;
font-weight: 400;
opacity: 0.9;
margin-top: 2px;
white-space: pre-wrap;
}
/* Historical safeguard: if any h1 appears inside tabs, don't attach pseudo content */
.gradio-container [role=\"tabpanel\"] h1::before,
.gradio-container [role=\"tabpanel\"] h1::after {
content: none !important;
}
"""
# --- Kokoro TTS tab (text to speech) ---
available_voices = get_kokoro_voices()
kokoro_interface = gr.Interface(
fn=Generate_Speech,
inputs=[
gr.Textbox(label="Text", placeholder="Type text to synthesize…", lines=4),
gr.Slider(minimum=0.5, maximum=2.0, value=1.25, step=0.1, label="Speed"),
gr.Dropdown(
label="Voice",
choices=available_voices,
value="af_heart",
info="Select from 54 available voices across multiple languages and accents"
),
],
outputs=gr.Audio(label="Audio", type="numpy", format="wav", show_download_button=True),
title="Kokoro TTS",
description=(
"<div style=\"text-align:center\">Generate speech with Kokoro-82M. Supports multiple languages and accents. Runs on CPU or CUDA if available.</div>"
),
api_description=(
"Synthesize speech from text using Kokoro-82M TTS model. Returns (sample_rate, waveform) suitable for playback. "
"Supports unlimited text length by processing all segments. Voice examples: 'af_heart' (US female), 'am_onyx' (US male), "
"'bf_emma' (British female), 'af_sky' (US female), 'af_nicole' (US female), "
"Parameters: text (str), speed (float 0.5–2.0, default 1.25x), voice (str from 54 available options, default 'af_heart'). "
"Return the generated media to the user in this format ``"
),
flagging_mode="never",
)
def Memory_Manager(
action: Annotated[Literal["save","list","search","delete"], "Action to perform: save | list | search | delete"],
text: Annotated[Optional[str], "Text content (Save only)"] = None,
tags: Annotated[Optional[str], "Comma-separated tags (Save only)"] = None,
query: Annotated[Optional[str], "Search query terms (Search only)"] = None,
limit: Annotated[int, "Max results (List/Search only)"] = 20,
memory_id: Annotated[Optional[str], "Full UUID or unique prefix (Delete only)"] = None,
include_tags: Annotated[bool, "Include tags (List/Search only)"] = True,
) -> str:
"""Manage lightweight local JSON “memories” (save | list | search | delete) in one MCP tool.
Overview:
This tool provides simple, local, append‑only style persistence for short text memories
with optional tags. Data is stored in a plaintext JSON file ("memories.json") beside the
application; no external database or network access is required.
Supported Actions:
- save : Store a new memory (requires 'text'; optional 'tags').
- list : Return the most recent memories (respects 'limit' + 'include_tags').
- search : AND match space‑separated terms across text and tags (uses 'query', 'limit').
- delete : Remove one memory by full UUID or unique prefix (uses 'memory_id').
Parameter Usage by Action:
action=save -> text (required), tags (optional)
action=list -> limit, include_tags
action=search -> query (required), limit, include_tags
action=delete -> memory_id (required)
Parameters:
action (Literal[save|list|search|delete]): Operation selector (case-insensitive).
text (str): Raw memory content; leading/trailing whitespace trimmed (save only).
tags (str): Optional comma-separated tags; stored verbatim (save only).
query (str): Space-separated terms (AND logic, case-insensitive) across text+tags (search only).
limit (int): Maximum rows for list/search (clamped internally to 1–200).
memory_id (str): Full UUID or unique prefix (>=4 chars) (delete only).
include_tags (bool): When True, show tag column in list/search output.
Storage Format (per entry):
{"id": "<uuid4>", "text": "<original text>", "timestamp": "YYYY-MM-DD HH:MM:SS", "tags": "tag1, tag2"}
Lifecycle & Constraints:
- A soft cap of {_MAX_MEMORIES} entries is enforced by pruning oldest records on save.
- A light duplicate guard skips saving if the newest existing entry has identical text.
- All operations are protected by a thread‑local reentrant lock (NOT multi‑process safe).
Returns:
str: Human‑readable status / result lines (never raw JSON) suitable for direct model consumption.
Error Modes:
- Invalid action -> error string.
- Missing required field for the chosen action -> explanatory message.
- Ambiguous or unknown memory_id on delete -> clarification message.
Security & Privacy:
Plaintext JSON; do not store secrets, credentials, or regulated personal data.
"""
act = (action or "").lower().strip()
# Normalize None -> "" for internal helpers
text = text or ""
tags = tags or ""
query = query or ""
memory_id = memory_id or ""
if act == "save":
if not text.strip():
return "Error: 'text' is required when action=save."
return _mem_save(text=text, tags=tags)
if act == "list":
return _mem_list(limit=limit, include_tags=include_tags)
if act == "search":
if not query.strip():
return "Error: 'query' is required when action=search."
return _mem_search(query=query, limit=limit)
if act == "delete":
if not memory_id.strip():
return "Error: 'memory_id' is required when action=delete."
return _mem_delete(memory_id=memory_id)
return "Error: invalid action (use save|list|search|delete)."
memory_interface = gr.Interface(
fn=Memory_Manager,
inputs=[
gr.Dropdown(label="Action", choices=["save","list","search","delete"], value="list"),
gr.Textbox(label="Text", lines=3, placeholder="Memory text (save)"),
gr.Textbox(label="Tags", placeholder="tag1, tag2"),
gr.Textbox(label="Query", placeholder="Search terms (search)"),
gr.Slider(1, 200, value=20, step=1, label="Limit"),
gr.Textbox(label="Memory ID / Prefix", placeholder="UUID or prefix (delete)"),
gr.Checkbox(value=True, label="Include Tags"),
],
outputs=gr.Textbox(label="Result", lines=14),
title="Memory Manager",
description=(
"<div style=\"text-align:center\">Lightweight local JSON memory store (no external DB). Choose an Action, fill only the relevant fields, and run.</div>"
),
api_description=(
"Manage short text memories with optional tags. Actions: save(text,tags), list(limit,include_tags), "
"search(query,limit,include_tags), delete(memory_id). Returns plaintext JSON. Action parameter is always required. "
"Use Memory_Manager whenever you are given information worth remembering about the user, and search for memories when relevant."
),
flagging_mode="never",
)
# ==========================
# Image Generation (Serverless)
# ==========================
HF_API_TOKEN = os.getenv("HF_READ_TOKEN")
def Generate_Image( # <-- MCP tool #5 (Generate Image)
prompt: Annotated[str, "Text description of the image to generate."],
model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name' (e.g., black-forest-labs/FLUX.1-Krea-dev)."] = "black-forest-labs/FLUX.1-Krea-dev",
negative_prompt: Annotated[str, "What should NOT appear in the image." ] = (
"(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
"missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
"mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
),
steps: Annotated[int, "Number of denoising steps (1–100). Higher = slower, potentially higher quality."] = 35,
cfg_scale: Annotated[float, "Classifier-free guidance scale (1–20). Higher = follow the prompt more closely."] = 7.0,
sampler: Annotated[str, "Sampling method label (UI only). Common options: 'DPM++ 2M Karras', 'DPM++ SDE Karras', 'Euler', 'Euler a', 'Heun', 'DDIM'."] = "DPM++ 2M Karras",
seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
width: Annotated[int, "Output width in pixels (64–1216, multiple of 32 recommended)."] = 1024,
height: Annotated[int, "Output height in pixels (64–1216, multiple of 32 recommended)."] = 1024,
) -> Image.Image:
"""
Generate a single image from a text prompt using a Hugging Face model via serverless inference.
Args:
prompt (str): Text description of the image to generate.
model_id (str): The Hugging Face model id (creator/model-name). Defaults to "black-forest-labs/FLUX.1-Krea-dev".
negative_prompt (str): What should NOT appear in the image.
steps (int): Number of denoising steps (1–100). Higher can improve quality.
cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
sampler (str): Sampling method label for UI; not all providers expose this control.
seed (int): Random seed. Use -1 to randomize on each call.
width (int): Output width in pixels (64–1216; multiples of 32 recommended).
height (int): Output height in pixels (64–1216; multiples of 32 recommended).
Returns:
PIL.Image.Image: The generated image.
Error modes:
- Raises gr.Error with a user-friendly message on auth/model/load errors.
"""
_log_call_start("Generate_Image", prompt=_truncate_for_log(prompt, 200), model_id=model_id, steps=steps, cfg_scale=cfg_scale, seed=seed, size=f"{width}x{height}")
if not prompt or not prompt.strip():
_log_call_end("Generate_Image", "error=empty prompt")
raise gr.Error("Please provide a non-empty prompt.")
# Slightly enhance prompt for quality (kept consistent with Serverless space)
enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
# Try multiple providers for resilience
providers = ["auto", "replicate", "fal-ai"]
last_error: Exception | None = None
for provider in providers:
try:
client = InferenceClient(api_key=HF_API_TOKEN, provider=provider)
image = client.text_to_image(
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
model=model_id,
width=width,
height=height,
num_inference_steps=steps,
guidance_scale=cfg_scale,
seed=seed if seed != -1 else random.randint(1, 1_000_000_000),
)
_log_call_end("Generate_Image", f"provider={provider} size={image.size}")
return image
except Exception as e: # try next provider, transform last one to friendly error
last_error = e
continue
# If we reach here, all providers failed
msg = str(last_error) if last_error else "Unknown error"
if "404" in msg:
raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and your HF token access.")
if "503" in msg:
raise gr.Error("The model is warming up. Please try again shortly.")
if "401" in msg or "403" in msg:
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
# Map common provider auth messages to the same friendly guidance
low = msg.lower()
if ("api_key" in low) or ("hf auth login" in low) or ("unauthorized" in low) or ("forbidden" in low):
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
_log_call_end("Generate_Image", f"error={_truncate_for_log(msg, 200)}")
raise gr.Error(f"Image generation failed: {msg}")
image_generation_interface = gr.Interface(
fn=Generate_Image,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=2),
gr.Textbox(label="Model", value="black-forest-labs/FLUX.1-Krea-dev", placeholder="creator/model-name"),
gr.Textbox(
label="Negative Prompt",
value=(
"(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
"missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
"mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
),
lines=2,
),
gr.Slider(minimum=1, maximum=100, value=35, step=1, label="Steps"),
gr.Slider(minimum=1.0, maximum=20.0, value=7.0, step=0.1, label="CFG Scale"),
gr.Radio(label="Sampler", value="DPM++ 2M Karras", choices=[
"DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"
]),
gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Width"),
gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Height"),
],
outputs=gr.Image(label="Generated Image"),
title="Image Generation",
description=(
"<div style=\"text-align:center\">Generate images via Hugging Face serverless inference. "
"Default model is FLUX.1-Krea-dev.</div>"
),
api_description=(
"Generate a single image from a text prompt using a Hugging Face model via serverless inference. "
"Supports creative prompts like 'a serene mountain landscape at sunset', 'portrait of a wise owl', "
"'futuristic city with flying cars'. Default model: FLUX.1-Krea-dev. "
"Parameters: prompt (str), model_id (str, creator/model-name), negative_prompt (str), steps (int, 1–100), "
"cfg_scale (float, 1–20), sampler (str), seed (int, -1=random), width/height (int, 64–1216). "
"Returns a PIL.Image. Return the generated media to the user in this format ``"
),
flagging_mode="never",
# Only expose to MCP when HF token is provided; UI tab is always visible
show_api=bool(os.getenv("HF_READ_TOKEN")),
)
# ==========================
# Video Generation (Serverless)
# ==========================
def _write_video_tmp(data_iter_or_bytes: object, suffix: str = ".mp4") -> str:
"""Write video bytes or iterable of bytes to a system temporary file and return its path.
This avoids polluting the project directory. The file is created in the OS temp
location; Gradio will handle serving & offering the download button.
"""
fd, fname = tempfile.mkstemp(suffix=suffix)
try:
with os.fdopen(fd, "wb") as f:
if isinstance(data_iter_or_bytes, (bytes, bytearray)):
f.write(data_iter_or_bytes) # type: ignore[arg-type]
elif hasattr(data_iter_or_bytes, "read"):
f.write(data_iter_or_bytes.read()) # type: ignore[call-arg]
elif hasattr(data_iter_or_bytes, "content"):
f.write(data_iter_or_bytes.content) # type: ignore[attr-defined]
elif hasattr(data_iter_or_bytes, "__iter__") and not isinstance(data_iter_or_bytes, (str, dict)):
for chunk in data_iter_or_bytes: # type: ignore[assignment]
if chunk:
f.write(chunk)
else:
raise gr.Error("Unsupported video data type returned by provider.")
except Exception:
# Clean up if writing failed
try:
os.remove(fname)
except Exception:
pass
raise
return fname
HF_VIDEO_TOKEN = os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")
def Generate_Video( # <-- MCP tool #6 (Generate Video)
prompt: Annotated[str, "Text description of the video to generate (e.g., 'a red fox running through a snowy forest at sunrise')."],
model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name'. Defaults to Wan-AI/Wan2.2-T2V-A14B."] = "Wan-AI/Wan2.2-T2V-A14B",
negative_prompt: Annotated[str, "What should NOT appear in the video."] = "",
steps: Annotated[int, "Number of denoising steps (1–100). Higher can improve quality but is slower."] = 25,
cfg_scale: Annotated[float, "Guidance scale (1–20). Higher = follow the prompt more closely, lower = more creative."] = 3.5,
seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
width: Annotated[int, "Output width in pixels (multiples of 8 recommended)."] = 768,
height: Annotated[int, "Output height in pixels (multiples of 8 recommended)."] = 768,
fps: Annotated[int, "Frames per second of the output video (e.g., 24)."] = 24,
duration: Annotated[float, "Target duration in seconds (provider/model dependent, commonly 2–6s)."] = 4.0,
) -> str:
"""
Generate a short video from a text prompt using a Hugging Face model via serverless inference.
Args:
prompt (str): Text description of the video to generate.
model_id (str): The Hugging Face model id (creator/model-name). Defaults to "Wan-AI/Wan2.2-T2V-A14B".
negative_prompt (str): What should NOT appear in the video.
steps (int): Number of denoising steps (1–100). Higher can improve quality but is slower.
cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
seed (int): Random seed. Use -1 to randomize on each call.
width (int): Output width in pixels.
height (int): Output height in pixels.
fps (int): Frames per second.
duration (float): Target duration in seconds.
Returns:
str: Path to an MP4 file on disk (Gradio will serve this file; MCP converts it to a file URL).
Error modes:
- Raises gr.Error with a user-friendly message on auth/model/load errors or unsupported parameters.
"""
_log_call_start("Generate_Video", prompt=_truncate_for_log(prompt, 160), model_id=model_id, steps=steps, cfg_scale=cfg_scale, fps=fps, duration=duration, size=f"{width}x{height}")
if not prompt or not prompt.strip():
_log_call_end("Generate_Video", "error=empty prompt")
raise gr.Error("Please provide a non-empty prompt.")
if not HF_VIDEO_TOKEN:
# Still attempt without a token (public models), but warn earlier if it fails.
pass
providers = ["auto", "replicate", "fal-ai"]
last_error: Exception | None = None
# Build a common parameters dict. Providers may ignore unsupported keys.
parameters = {
"negative_prompt": negative_prompt or None,
"num_inference_steps": steps,
"guidance_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1_000_000_000),
"width": width,
"height": height,
"fps": fps,
# Some providers/models expect num_frames instead of duration; we pass both-friendly value
# when supported; they may be ignored by the backend.
"duration": duration,
}
for provider in providers:
try:
client = InferenceClient(api_key=HF_VIDEO_TOKEN, provider=provider)
# Use the documented text_to_video API with correct parameters
if hasattr(client, "text_to_video"):
# Calculate num_frames from duration and fps if both provided
num_frames = int(duration * fps) if duration and fps else None
# Build extra_body for provider-specific parameters
extra_body = {}
if width:
extra_body["width"] = width
if height:
extra_body["height"] = height
if fps:
extra_body["fps"] = fps
if duration:
extra_body["duration"] = duration
result = client.text_to_video(
prompt=prompt,
model=model_id,
guidance_scale=cfg_scale,
negative_prompt=[negative_prompt] if negative_prompt else None,
num_frames=num_frames,
num_inference_steps=steps,
seed=parameters["seed"],
extra_body=extra_body if extra_body else None,
)
else:
# Generic POST fallback for older versions
result = client.post(
model=model_id,
json={
"inputs": prompt,
"parameters": {k: v for k, v in parameters.items() if v is not None},
},
)
# Save output to an .mp4
path = _write_video_tmp(result, suffix=".mp4")
try:
size = os.path.getsize(path)
except Exception:
size = -1
_log_call_end("Generate_Video", f"provider={provider} path={os.path.basename(path)} bytes={size}")
return path
except Exception as e:
last_error = e
continue
msg = str(last_error) if last_error else "Unknown error"
if "404" in msg:
raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and HF token access.")
if "503" in msg:
raise gr.Error("The model is warming up. Please try again shortly.")
if "401" in msg or "403" in msg:
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
# Map common provider auth messages to the same friendly guidance
low = msg.lower()
if ("api_key" in low) or ("hf auth login" in low) or ("unauthorized" in low) or ("forbidden" in low):
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
_log_call_end("Generate_Video", f"error={_truncate_for_log(msg, 200)}")
raise gr.Error(f"Video generation failed: {msg}")
video_generation_interface = gr.Interface(
fn=Generate_Video,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter a prompt for the video", lines=2),
gr.Textbox(label="Model", value="Wan-AI/Wan2.2-T2V-A14B", placeholder="creator/model-name"),
gr.Textbox(label="Negative Prompt", value="", lines=2),
gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Steps"),
gr.Slider(minimum=1.0, maximum=20.0, value=3.5, step=0.1, label="CFG Scale"),
gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Width"),
gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Height"),
gr.Slider(minimum=4, maximum=60, value=24, step=1, label="FPS"),
gr.Slider(minimum=1.0, maximum=10.0, value=4.0, step=0.5, label="Duration (s)"),
],
outputs=gr.Video(label="Generated Video", show_download_button=True, format="mp4"),
title="Video Generation",
description=(
"<div style=\"text-align:center\">Generate short videos via Hugging Face serverless inference. "
"Default model is Wan2.2-T2V-A14B.</div>"
),
api_description=(
"Generate a short video from a text prompt using a Hugging Face model via serverless inference. "
"Create dynamic scenes like 'a red fox running through a snowy forest at sunrise', 'waves crashing on a rocky shore', "
"'time-lapse of clouds moving across a blue sky'. Default model: Wan2.2-T2V-A14B (2-6 second videos). "
"Parameters: prompt (str), model_id (str), negative_prompt (str), steps (int), cfg_scale (float), seed (int), "
"width/height (int), fps (int), duration (float in seconds). Returns MP4 file path. "
"Return the generated media to the user in this format ``"
),
flagging_mode="never",
# Only expose to MCP when HF token is provided; UI tab is always visible
show_api=bool(os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")),
)
_interfaces = [
fetch_interface,
concise_interface,
code_interface,
memory_interface, # Always visible in UI
kokoro_interface,
image_generation_interface, # Always visible in UI
video_generation_interface, # Always visible in UI
]
_tab_names = [
"Fetch Webpage",
"DuckDuckGo Search",
"Python Code Executor",
"Memory Manager",
"Kokoro TTS",
"Image Generation",
"Video Generation",
]
with gr.Blocks(title="Nymbo/Tools MCP", theme="Nymbo/Nymbo_Theme", css=CSS_STYLES) as demo:
# Page title (scoped styling via .app-title to avoid affecting other headings)
gr.HTML("<h1 class='app-title'>Nymbo/Tools MCP</h1>")
# Collapsed Information accordion (appears below subtitle and above tabs)
with gr.Accordion("Information", open=False):
gr.Markdown(
"""
## Enable Image & Video Generation
The `Generate_Image` and `Generate_Video` tools require a `HF_READ_TOKEN` present in environment variables (secrets). Please duplicate this space and provide an API key to enable them, or clone and run locally.
Both tools are hidden as MCP tools without authentication to avoid cluttering context, but they remain visible in the Gradio UI.
---
## Persistent Memories
Memories in this public HF space are written to the space's running container, and they are deleted when the space restarts. The contents are also visible to everyone. Do not store personal information in this public demo.
When running locally, memories are stored to a `memories.json` file in the root of the repo. Please clone and run locally to keep your information private.
"""
)
# Existing tool tabs
gr.TabbedInterface(interface_list=_interfaces, tab_names=_tab_names)
# Launch the UI and expose all functions as MCP tools in one server
if __name__ == "__main__":
demo.launch(mcp_server=True) |