File size: 67,200 Bytes
19a37f3
b3ae1ba
adf895d
4add2a4
574e025
964c38f
19a37f3
 
c730636
 
 
 
 
 
aa2cd6e
 
c730636
4853dce
c730636
 
 
 
ee1c18d
 
fdd5b1f
7c1a6bf
aa2cd6e
 
ee1c18d
0c80777
77fd5a2
 
 
c730636
f4462c5
 
 
 
 
 
 
 
 
 
 
 
c730636
 
ed7ddca
c730636
 
ed7ddca
c730636
ed7ddca
c730636
 
ed7ddca
c730636
ed7ddca
 
 
 
 
c730636
ed7ddca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c730636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee1c18d
 
c730636
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4885c
1b92bc9
9e4885c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ae1ba
c730636
b3ae1ba
 
c730636
b3ae1ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c730636
 
 
b3ae1ba
 
c730636
 
b3ae1ba
 
 
 
 
 
c730636
8ef3df1
b3ae1ba
 
 
 
 
8ef3df1
 
b3ae1ba
 
 
 
 
 
c730636
fdd5b1f
c730636
fdd5b1f
 
 
c730636
 
ed7ddca
c730636
 
fdd5b1f
 
 
c730636
 
 
 
fdd5b1f
 
 
c730636
ee1c18d
 
 
c730636
b3ae1ba
c730636
b3ae1ba
 
 
 
fdd5b1f
b3ae1ba
fdd5b1f
b3ae1ba
fdd5b1f
 
 
c730636
 
 
ed7ddca
c730636
 
ed7ddca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdd5b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adf895d
b3ae1ba
cbbe438
c730636
 
1b92bc9
c730636
8ef3df1
b3ae1ba
 
 
 
 
 
 
 
8ef3df1
 
b3ae1ba
c730636
fdd5b1f
c730636
fdd5b1f
 
 
c730636
ed7ddca
 
 
c730636
ed7ddca
 
 
 
c730636
 
ed7ddca
c730636
ed7ddca
 
 
 
 
 
 
fdd5b1f
 
 
ed7ddca
 
fdd5b1f
 
 
c730636
ed7ddca
c730636
ee1c18d
b3ae1ba
c730636
 
 
 
 
 
ed7ddca
 
b3ae1ba
 
ed7ddca
 
 
 
 
fdd5b1f
 
 
b3ae1ba
 
 
 
 
 
 
 
 
fdd5b1f
 
 
c730636
 
 
63e7ff5
c730636
 
cbbe438
c730636
8ef3df1
 
 
b3ae1ba
8ef3df1
 
 
 
c730636
fdd5b1f
c730636
fdd5b1f
 
 
c730636
 
 
 
 
fdd5b1f
c730636
fdd5b1f
c730636
 
fdd5b1f
 
c730636
 
f4462c5
 
 
 
 
 
 
 
 
 
 
 
574e025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4462c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574e025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d265e96
f4462c5
a455050
1b92bc9
675e6f3
f4462c5
1b92bc9
f4462c5
208563c
574e025
 
 
f4462c5
 
b3ae1ba
 
1b92bc9
f4462c5
 
675e6f3
 
 
f4462c5
fdd5b1f
f4462c5
fdd5b1f
 
 
 
f4462c5
 
 
 
 
 
 
 
 
 
d6038df
 
f4462c5
fdd5b1f
d6038df
 
 
 
fdd5b1f
d6038df
 
 
 
 
 
fdd5b1f
d6038df
 
 
fdd5b1f
d6038df
 
fdd5b1f
d6038df
 
fdd5b1f
d6038df
 
 
 
 
 
 
 
 
fdd5b1f
 
 
d6038df
fdd5b1f
 
 
 
d6038df
fdd5b1f
d6038df
f4462c5
 
77fd5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a37f3
77fd5a2
 
 
19a37f3
77fd5a2
19a37f3
 
77fd5a2
19a37f3
 
 
 
 
77fd5a2
19a37f3
 
 
 
 
77fd5a2
19a37f3
29a6b18
77fd5a2
19a37f3
 
77fd5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a37f3
77fd5a2
 
 
19a37f3
77fd5a2
19a37f3
 
 
77fd5a2
19a37f3
 
 
77fd5a2
19a37f3
 
77fd5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
5ba3759
 
 
77fd5a2
 
 
19a37f3
77fd5a2
 
 
19a37f3
77fd5a2
19a37f3
 
 
 
77fd5a2
19a37f3
 
 
77fd5a2
 
19a37f3
77fd5a2
 
 
 
 
 
 
 
 
 
 
5ba3759
 
77fd5a2
 
 
5ba3759
 
 
77fd5a2
 
5ba3759
 
 
 
 
 
 
77fd5a2
 
 
19a37f3
77fd5a2
 
19a37f3
77fd5a2
19a37f3
 
77fd5a2
 
19a37f3
 
 
 
77fd5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c730636
f4462c5
c730636
 
 
 
b3ae1ba
c730636
4c3fbd3
b3ae1ba
 
 
 
 
 
c730636
b3ae1ba
c730636
c92323a
b3ae1ba
c92323a
c730636
b3ae1ba
1b92bc9
c730636
adc22db
c730636
 
b3ae1ba
c730636
adf895d
c730636
4c3fbd3
 
c730636
ed7ddca
adf895d
c92323a
29a6b18
c92323a
c730636
1b92bc9
b3ae1ba
 
 
c730636
adc22db
c730636
 
 
63e7ff5
c730636
 
 
 
4c3fbd3
1bdb7e1
c730636
c92323a
1e55af1
c92323a
8d5ec93
b3ae1ba
 
 
 
 
8d5ec93
adc22db
c730636
 
4c3fbd3
f732b24
 
4c3fbd3
 
 
 
 
 
f732b24
4c3fbd3
19a37f3
4c3fbd3
 
 
 
 
 
 
f732b24
4c3fbd3
db1adf2
4c3fbd3
 
 
 
 
 
 
 
f732b24
4c3fbd3
 
 
 
 
 
f4462c5
574e025
f4462c5
d265e96
f4462c5
4c3fbd3
574e025
 
 
 
 
 
 
f4462c5
adc22db
f4462c5
 
29a6b18
f4462c5
 
1b92bc9
 
 
b3ae1ba
86c62a8
f4462c5
adc22db
f4462c5
 
29a6b18
19a37f3
29a6b18
 
 
 
 
 
19a37f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4853dce
 
 
 
 
 
 
19a37f3
4853dce
 
19a37f3
 
 
 
4853dce
 
19a37f3
 
4853dce
 
19a37f3
 
 
 
29a6b18
19a37f3
 
 
 
 
 
 
 
 
 
 
 
29a6b18
19a37f3
 
 
29a6b18
 
19a37f3
 
 
77fd5a2
aa2cd6e
cd28068
aa2cd6e
 
 
 
 
d265e96
aa2cd6e
cd28068
aa2cd6e
 
 
 
 
 
 
 
 
 
 
 
 
1b92bc9
aa2cd6e
 
 
21ba6d1
aa2cd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
fdd5b1f
aa2cd6e
fdd5b1f
aa2cd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd28068
aa2cd6e
 
 
 
 
 
fdd5b1f
aa2cd6e
 
 
 
 
 
 
 
cd28068
aa2cd6e
 
 
3fbb4bd
 
 
 
 
fdd5b1f
aa2cd6e
 
 
cd28068
d265e96
aa2cd6e
4c3fbd3
 
aa2cd6e
 
 
 
 
 
 
 
 
4c3fbd3
 
aa2cd6e
 
4c3fbd3
 
 
 
aa2cd6e
1bdb7e1
cd28068
aa2cd6e
29a6b18
 
aa2cd6e
 
1b92bc9
b3ae1ba
1b92bc9
b3ae1ba
 
 
aa2cd6e
adc22db
57c8ad1
 
aa2cd6e
 
12e0f66
 
 
 
 
0c80777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e0f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b92bc9
12e0f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdd5b1f
12e0f66
fdd5b1f
12e0f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdd5b1f
 
 
 
 
12e0f66
 
 
 
 
 
 
 
 
 
 
3fbb4bd
 
 
 
 
fdd5b1f
12e0f66
 
 
 
 
 
4c3fbd3
 
 
 
 
 
 
 
 
 
12e0f66
4beb2ea
12e0f66
 
29a6b18
12e0f66
 
 
1b92bc9
b3ae1ba
 
12e0f66
b3ae1ba
 
12e0f66
adc22db
57c8ad1
 
12e0f66
 
e892648
 
 
 
57c8ad1
e892648
57c8ad1
 
e892648
 
 
 
 
57c8ad1
e892648
57c8ad1
 
e892648
 
f732b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c730636
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
# Purpose: One Space that offers up to seven tools/tabs (all exposed as MCP tools):
#   1) Fetch — convert webpages to clean Markdown format
#   2) DuckDuckGo Search — compact JSONL search output (short keys to minimize tokens)
#   3) Python Code Executor — run Python code and capture stdout/errors
#   4) Kokoro TTS — synthesize speech from text using Kokoro-82M with 54 voice options
#   5) Memory Manager — lightweight JSON-based local memory store
#   6) Image Generation - HF serverless inference providers (requires HF_READ_TOKEN)
#   7) Video Generation - HF serverless inference providers (requires HF_READ_TOKEN)

from __future__ import annotations

import re
import json
import sys
import os
import random
from io import StringIO
from typing import List, Dict, Tuple, Annotated, Literal, Optional

import gradio as gr
import requests
from bs4 import BeautifulSoup
from markdownify import markdownify as md
from readability import Document
from urllib.parse import urlparse
from ddgs import DDGS
from PIL import Image
from huggingface_hub import InferenceClient
import time
import tempfile
import uuid
import threading
from datetime import datetime

# Optional imports for Kokoro TTS (loaded lazily)
import numpy as np
try:
    import torch  # type: ignore
except Exception:  # pragma: no cover - optional dependency
    torch = None  # type: ignore
try:
    from kokoro import KModel, KPipeline  # type: ignore
except Exception:  # pragma: no cover - optional dependency
    KModel = None  # type: ignore
    KPipeline = None  # type: ignore


# ==============================
# Fetch: Enhanced HTTP + extraction utils
# ==============================

def _http_get_enhanced(url: str) -> requests.Response:
    """
    Download the page with enhanced headers, timeout handling, and better error recovery.
    """
    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
        "Accept-Language": "en-US,en;q=0.9",
        "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
        "Accept-Encoding": "gzip, deflate, br",
        "DNT": "1",
        "Connection": "keep-alive",
        "Upgrade-Insecure-Requests": "1",
    }
    
    # Apply rate limiting
    _fetch_rate_limiter.acquire()
    
    try:
        response = requests.get(
            url, 
            headers=headers, 
            timeout=30,  # Increased timeout
            allow_redirects=True,
            stream=False
        )
        response.raise_for_status()
        return response
    except requests.exceptions.Timeout:
        raise requests.exceptions.RequestException("Request timed out. The webpage took too long to respond.")
    except requests.exceptions.ConnectionError:
        raise requests.exceptions.RequestException("Connection error. Please check the URL and your internet connection.")
    except requests.exceptions.HTTPError as e:
        if response.status_code == 403:
            raise requests.exceptions.RequestException("Access forbidden. The website may be blocking automated requests.")
        elif response.status_code == 404:
            raise requests.exceptions.RequestException("Page not found. Please check the URL.")
        elif response.status_code == 429:
            raise requests.exceptions.RequestException("Rate limited. Please try again in a few minutes.")
        else:
            raise requests.exceptions.RequestException(f"HTTP error {response.status_code}: {str(e)}")

def _normalize_whitespace(text: str) -> str:
    """
    Squeeze extra spaces and blank lines to keep things compact.
    (Layman's terms: tidy up the text so it’s not full of weird spacing.)
    """
    text = re.sub(r"[ \t\u00A0]+", " ", text)
    text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text.strip())
    return text.strip()


def _truncate(text: str, max_chars: int) -> Tuple[str, bool]:
    """
    Cut text if it gets too long; return the text and whether we trimmed.
    (Layman's terms: shorten long text and tell us if we had to cut it.)
    """
    if max_chars is None or max_chars <= 0 or len(text) <= max_chars:
        return text, False
    return text[:max_chars].rstrip() + " …", True


def _shorten(text: str, limit: int) -> str:
    """
    Hard cap a string with an ellipsis to keep tokens small.
    (Layman's terms: force a string to a max length with an ellipsis.)
    """
    if limit <= 0 or len(text) <= limit:
        return text
    return text[: max(0, limit - 1)].rstrip() + "…"


def _domain_of(url: str) -> str:
    """
    Show a friendly site name like "example.com".
    (Layman's terms: pull the website's domain.)
    """
    try:
        return urlparse(url).netloc or ""
    except Exception:
        return ""


def _meta(soup: BeautifulSoup, name: str) -> str | None:
    tag = soup.find("meta", attrs={"name": name})
    return tag.get("content") if tag and tag.has_attr("content") else None


def _og(soup: BeautifulSoup, prop: str) -> str | None:
    tag = soup.find("meta", attrs={"property": prop})
    return tag.get("content") if tag and tag.has_attr("content") else None


def _extract_metadata(soup: BeautifulSoup, final_url: str) -> Dict[str, str]:
    """
    Pull the useful bits: title, description, site name, canonical URL, language, etc.
    (Layman's terms: gather page basics like title/description/address.)
    """
    meta: Dict[str, str] = {}

    # Title preference: <title> > og:title > twitter:title
    title_candidates = [
        (soup.title.string if soup.title and soup.title.string else None),
        _og(soup, "og:title"),
        _meta(soup, "twitter:title"),
    ]
    meta["title"] = next((t.strip() for t in title_candidates if t and t.strip()), "")

    # Description preference: description > og:description > twitter:description
    desc_candidates = [
        _meta(soup, "description"),
        _og(soup, "og:description"),
        _meta(soup, "twitter:description"),
    ]
    meta["description"] = next((d.strip() for d in desc_candidates if d and d.strip()), "")

    # Canonical link (helps dedupe)
    link_canonical = soup.find("link", rel=lambda v: v and "canonical" in v)
    meta["canonical"] = (link_canonical.get("href") or "").strip() if link_canonical else ""

    # Site name + language info if present
    meta["site_name"] = (_og(soup, "og:site_name") or "").strip()
    html_tag = soup.find("html")
    meta["lang"] = (html_tag.get("lang") or "").strip() if html_tag else ""

    # Final URL + domain
    meta["fetched_url"] = final_url
    meta["domain"] = _domain_of(final_url)

    return meta


def _extract_main_text(html: str) -> Tuple[str, BeautifulSoup]:
    """
    Use Readability to isolate the main article and turn it into clean text.
    Returns (clean_text, soup_of_readable_html).
    (Layman's terms: find the real article text and clean it.)
    """
    # Simplified article HTML from Readability
    doc = Document(html)
    readable_html = doc.summary(html_partial=True)

    # Parse simplified HTML
    s = BeautifulSoup(readable_html, "lxml")

    # Remove noisy tags
    for sel in ["script", "style", "noscript", "iframe", "svg"]:
        for tag in s.select(sel):
            tag.decompose()

    # Keep paragraphs, list items, and subheadings for structure without bloat
    text_parts: List[str] = []
    for p in s.find_all(["p", "li", "h2", "h3", "h4", "blockquote"]):
        chunk = p.get_text(" ", strip=True)
        if chunk:
            text_parts.append(chunk)

    clean_text = _normalize_whitespace("\n\n".join(text_parts))
    return clean_text, s


def _fullpage_markdown_from_soup(full_soup: BeautifulSoup, base_url: str) -> str:
    
    # Remove unwanted elements globally first
    for element in full_soup.select("script, style, nav, footer, header, aside"):
        element.decompose()

    # Try common main-content containers, then fallback to body
    main = (
        full_soup.find("main")
        or full_soup.find("article")
        or full_soup.find("div", class_=re.compile(r"content|main|post|article", re.I))
        or full_soup.find("body")
    )

    if not main:
        return "No main content found on the webpage."

    # Convert selected HTML to Markdown
    markdown_text = md(str(main), heading_style="ATX")

    # Clean up the markdown similar to web-scraper
    markdown_text = re.sub(r"\n{3,}", "\n\n", markdown_text)
    markdown_text = re.sub(r"\[\s*\]\([^)]*\)", "", markdown_text)  # empty links
    markdown_text = re.sub(r"[ \t]+", " ", markdown_text)
    markdown_text = markdown_text.strip()

    # Add title if present
    title = full_soup.find("title")
    if title and title.get_text(strip=True):
        markdown_text = f"# {title.get_text(strip=True)}\n\n{markdown_text}"

    return markdown_text or "No content could be extracted."


def _truncate_markdown(markdown: str, max_chars: int) -> str:
    """
    Truncate markdown content to a maximum character count while preserving structure.
    Tries to break at paragraph boundaries when possible.
    """
    if len(markdown) <= max_chars:
        return markdown
    
    # Find a good break point near the limit
    truncated = markdown[:max_chars]
    
    # Try to break at the end of a paragraph (double newline)
    last_paragraph = truncated.rfind('\n\n')
    if last_paragraph > max_chars * 0.7:  # If we find a paragraph break in the last 30%
        truncated = truncated[:last_paragraph]
    
    # Try to break at the end of a sentence
    elif '.' in truncated[-100:]:  # Look for a period in the last 100 chars
        last_period = truncated.rfind('.')
        if last_period > max_chars * 0.8:  # If we find a period in the last 20%
            truncated = truncated[:last_period + 1]
    
    return truncated.rstrip() + "\n\n> *[Content truncated for brevity]*"


def Fetch_Webpage(  # <-- MCP tool #1 (Fetch)
    url: Annotated[str, "The absolute URL to fetch (must return HTML)."],
    verbosity: Annotated[str, "Controls output length: 'Brief' (1000 chars), 'Standard' (3000 chars), or 'Full' (complete page)."] = "Standard",
) -> str:
    """
    Fetch a web page and return it converted to Markdown format with configurable length.
    
    This function retrieves a webpage and converts its main content to clean Markdown,
    preserving headings, formatting, and structure. It automatically removes navigation,
    footers, scripts, and other non-content elements to focus on the main article or
    content area.

    Args:
        url (str): The absolute URL to fetch (must return HTML).
        verbosity (str): Controls output length:
            - "Brief": Truncate to 1000 characters for quick summaries
            - "Standard": Truncate to 3000 characters for balanced content
            - "Full": Return complete page content with no length limit

    Returns:
        str: The webpage content converted to Markdown format with:
            - Page title as H1 header
            - Main content converted to clean Markdown
            - Preserved heading hierarchy
            - Clean formatting without navigation/sidebar elements
            - Length controlled by verbosity setting
    """
    _log_call_start("Fetch_Webpage", url=url, verbosity=verbosity)
    if not url or not url.strip():
        result = "Please enter a valid URL."
        _log_call_end("Fetch_Webpage", _truncate_for_log(result))
        return result

    try:
        resp = _http_get_enhanced(url)
        resp.raise_for_status()
    except requests.exceptions.RequestException as e:
        result = f"An error occurred: {e}"
        _log_call_end("Fetch_Webpage", _truncate_for_log(result))
        return result

    final_url = str(resp.url)
    ctype = resp.headers.get("Content-Type", "")
    if "html" not in ctype.lower():
        result = f"Unsupported content type for extraction: {ctype or 'unknown'}"
        _log_call_end("Fetch_Webpage", _truncate_for_log(result))
        return result

    # Decode to text
    resp.encoding = resp.encoding or resp.apparent_encoding
    html = resp.text

    # Parse HTML and convert to full-page Markdown
    full_soup = BeautifulSoup(html, "lxml")
    markdown_content = _fullpage_markdown_from_soup(full_soup, final_url)
    
    # Apply verbosity-based truncation
    if verbosity == "Brief":
        result = _truncate_markdown(markdown_content, 1000)
    elif verbosity == "Standard":
        result = _truncate_markdown(markdown_content, 3000)
    else:  # "Full"
        result = markdown_content
    _log_call_end("Fetch_Webpage", f"markdown_chars={len(result)}")
    return result


# ============================================
# DuckDuckGo Search: Enhanced with error handling & rate limiting
# ============================================

import asyncio
from datetime import datetime, timedelta

class RateLimiter:
    def __init__(self, requests_per_minute: int = 30):
        self.requests_per_minute = requests_per_minute
        self.requests = []

    def acquire(self):
        """Synchronous rate limiting for non-async context"""
        now = datetime.now()
        # Remove requests older than 1 minute
        self.requests = [
            req for req in self.requests if now - req < timedelta(minutes=1)
        ]

        if len(self.requests) >= self.requests_per_minute:
            # Wait until we can make another request
            wait_time = 60 - (now - self.requests[0]).total_seconds()
            if wait_time > 0:
                time.sleep(max(1, wait_time))  # At least 1 second wait
                
        self.requests.append(now)

# Global rate limiters
_search_rate_limiter = RateLimiter(requests_per_minute=20)
_fetch_rate_limiter = RateLimiter(requests_per_minute=25)

# ==============================
# Logging Helpers (print I/O to terminal)
# ==============================

def _truncate_for_log(value: str, limit: int = 500) -> str:
    """Truncate long strings for concise terminal logging."""
    if len(value) <= limit:
        return value
    return value[:limit - 1] + "…"


def _serialize_input(val):  # type: ignore[return-any]
    """Best-effort compact serialization of arbitrary input values for logging."""
    try:
        if isinstance(val, (str, int, float, bool)) or val is None:
            return val
        if isinstance(val, (list, tuple)):
            return [_serialize_input(v) for v in list(val)[:10]] + (["…"] if len(val) > 10 else [])  # type: ignore[index]
        if isinstance(val, dict):
            out = {}
            for i, (k, v) in enumerate(val.items()):
                if i >= 12:
                    out["…"] = "…"
                    break
                out[str(k)] = _serialize_input(v)
            return out
        return repr(val)[:120]
    except Exception:
        return "<unserializable>"


def _log_call_start(func_name: str, **kwargs) -> None:
    try:
        compact = {k: _serialize_input(v) for k, v in kwargs.items()}
        print(f"[TOOL CALL] {func_name} inputs: {json.dumps(compact, ensure_ascii=False)[:800]}", flush=True)
    except Exception as e:  # pragma: no cover - logging safety
        print(f"[TOOL CALL] {func_name} (failed to log inputs: {e})", flush=True)


def _log_call_end(func_name: str, output_desc: str) -> None:
    try:
        print(f"[TOOL RESULT] {func_name} output: {output_desc}", flush=True)
    except Exception as e:  # pragma: no cover
        print(f"[TOOL RESULT] {func_name} (failed to log output: {e})", flush=True)

def Search_DuckDuckGo(  # <-- MCP tool #2 (DDG Search)
    query: Annotated[str, "The search query (supports operators like site:, quotes, OR)."],
    max_results: Annotated[int, "Number of results to return (1–20)."] = 5,
) -> str:
    """
    Run a DuckDuckGo search and return numbered results with URLs, titles, and summaries.

    Args:
        query (str): The search query string. Supports operators like site:, quotes for exact matching,
               OR for alternatives, and other DuckDuckGo search syntax.
               Examples:
               - Basic search: "Python programming"
               - Site search: "site:example.com"
               - Exact phrase: "artificial intelligence"
               - Exclude terms: "cats -dogs"
        max_results (int): Number of results to return (1–20). Default: 5.

    Returns:
        str: Search results in readable format with titles, URLs, and snippets as a numbered list.
    """
    _log_call_start("Search_DuckDuckGo", query=query, max_results=max_results)
    if not query or not query.strip():
        result = "No search query provided. Please enter a search term."
        _log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
        return result

    # Validate max_results
    max_results = max(1, min(20, max_results))
    
    try:
        # Apply rate limiting to avoid being blocked
        _search_rate_limiter.acquire()
        
        # Perform search with timeout handling
        with DDGS() as ddgs:
            raw = ddgs.text(query, max_results=max_results)
            
    except Exception as e:
        error_msg = f"Search failed: {str(e)[:200]}"
        if "blocked" in str(e).lower() or "rate" in str(e).lower():
            error_msg = "Search temporarily blocked due to rate limiting. Please try again in a few minutes."
        elif "timeout" in str(e).lower():
            error_msg = "Search timed out. Please try again with a simpler query."
        elif "network" in str(e).lower() or "connection" in str(e).lower():
            error_msg = "Network connection error. Please check your internet connection and try again."
        result = f"Error: {error_msg}"
        _log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
        return result

    if not raw:
        result = f"No results found for query: {query}"
        _log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
        return result

    results = []

    for r in raw or []:
        title = (r.get("title") or "").strip()
        url = (r.get("href") or r.get("link") or "").strip()
        body = (r.get("body") or r.get("snippet") or "").strip()

        if not url:
            continue

        result_obj = {
            "title": title or _domain_of(url),
            "url": url,
            "snippet": body
        }
            
        results.append(result_obj)

    if not results:
        result = f"No valid results found for query: {query}"
        _log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
        return result

    # Format output in readable format
    lines = [f"Found {len(results)} search results for: {query}\n"]
    for i, result in enumerate(results, 1):
        lines.append(f"{i}. {result['title']}")
        lines.append(f"   URL: {result['url']}")
        if result['snippet']:
            lines.append(f"   Summary: {result['snippet']}")
        lines.append("")  # Empty line between results
    result = "\n".join(lines)
    _log_call_end("Search_DuckDuckGo", f"results={len(results)} chars={len(result)}")
    return result


# ======================================
# Code Execution: Python (MCP tool #3)
# ======================================

def Execute_Python(code: Annotated[str, "Python source code to run; stdout is captured and returned."]) -> str:
    """
    Execute arbitrary Python code and return captured stdout or an error message.

    Args:
        code (str): Python source code to run; stdout is captured and returned.

    Returns:
        str: Combined stdout produced by the code, or the exception text if
        execution failed.
    """
    _log_call_start("Execute_Python", code=_truncate_for_log(code or "", 300))
    if code is None:
        result = "No code provided."
        _log_call_end("Execute_Python", result)
        return result

    old_stdout = sys.stdout
    redirected_output = sys.stdout = StringIO()
    try:
        exec(code)
        result = redirected_output.getvalue()
    except Exception as e:
        result = str(e)
    finally:
        sys.stdout = old_stdout
    _log_call_end("Execute_Python", _truncate_for_log(result))
    return result


# ==========================
# Kokoro TTS (MCP tool #4)
# ==========================

_KOKORO_STATE = {
    "initialized": False,
    "device": "cpu",
    "model": None,
    "pipelines": {},
}


def get_kokoro_voices():
    """Get comprehensive list of available Kokoro voice IDs (54 total)."""
    try:
        from huggingface_hub import list_repo_files
        # Get voice files from the Kokoro repository
        files = list_repo_files('hexgrad/Kokoro-82M')
        voice_files = [f for f in files if f.endswith('.pt') and f.startswith('voices/')]
        voices = [f.replace('voices/', '').replace('.pt', '') for f in voice_files]
        return sorted(voices) if voices else _get_fallback_voices()
    except Exception:
        return _get_fallback_voices()


def _get_fallback_voices():
    """Return comprehensive fallback list of known Kokoro voices (54 total)."""
    return [
        # American Female (11 voices)
        "af_alloy", "af_aoede", "af_bella", "af_heart", "af_jessica", 
        "af_kore", "af_nicole", "af_nova", "af_river", "af_sarah", "af_sky",
        # American Male (9 voices)
        "am_adam", "am_echo", "am_eric", "am_fenrir", "am_liam", 
        "am_michael", "am_onyx", "am_puck", "am_santa",
        # British Female (4 voices)
        "bf_alice", "bf_emma", "bf_isabella", "bf_lily",
        # British Male (4 voices)
        "bm_daniel", "bm_fable", "bm_george", "bm_lewis",
        # European Female/Male (3 voices)
        "ef_dora", "em_alex", "em_santa",
        # French Female (1 voice)
        "ff_siwis",
        # Hindi Female/Male (4 voices)
        "hf_alpha", "hf_beta", "hm_omega", "hm_psi",
        # Italian Female/Male (2 voices)
        "if_sara", "im_nicola",
        # Japanese Female/Male (5 voices)
        "jf_alpha", "jf_gongitsune", "jf_nezumi", "jf_tebukuro", "jm_kumo",
        # Portuguese Female/Male (3 voices)
        "pf_dora", "pm_alex", "pm_santa",
        # Chinese Female/Male (8 voices)
        "zf_xiaobei", "zf_xiaoni", "zf_xiaoxiao", "zf_xiaoyi",
        "zm_yunjian", "zm_yunxi", "zm_yunxia", "zm_yunyang"
    ]


def _init_kokoro() -> None:
    """Lazy-initialize Kokoro model and pipelines on first use.

    Tries CUDA if torch is present and available; falls back to CPU. Keeps a
    minimal English pipeline and custom lexicon tweak for the word "kokoro".
    """
    if _KOKORO_STATE["initialized"]:
        return

    if KModel is None or KPipeline is None:
        raise RuntimeError(
            "Kokoro is not installed. Please install the 'kokoro' package (>=0.9.4)."
        )

    device = "cpu"
    if torch is not None:
        try:
            if torch.cuda.is_available():  # type: ignore[attr-defined]
                device = "cuda"
        except Exception:
            device = "cpu"

    model = KModel().to(device).eval()
    pipelines = {"a": KPipeline(lang_code="a", model=False)}
    # Custom pronunciation
    try:
        pipelines["a"].g2p.lexicon.golds["kokoro"] = "kˈOkəɹO"
    except Exception:
        pass

    _KOKORO_STATE.update(
        {
            "initialized": True,
            "device": device,
            "model": model,
            "pipelines": pipelines,
        }
    )


def List_Kokoro_Voices() -> List[str]:
    """
    Get a list of all available Kokoro voice identifiers.
    
    This MCP tool helps clients discover the 54 available voice options
    for the Generate_Speech tool.
    
    Returns:
        List[str]: A list of voice identifiers (e.g., ["af_heart", "am_adam", "bf_alice", ...])
        
    Voice naming convention:
        - First 2 letters: Language/Region (af=American Female, am=American Male, bf=British Female, etc.)
        - Following letters: Voice name (heart, adam, alice, etc.)
        
    Available categories:
        - American Female/Male (20 voices)
        - British Female/Male (8 voices) 
        - European Female/Male (3 voices)
        - French Female (1 voice)
        - Hindi Female/Male (4 voices)
        - Italian Female/Male (2 voices)
        - Japanese Female/Male (5 voices)
        - Portuguese Female/Male (3 voices)
        - Chinese Female/Male (8 voices)
    """
    return get_kokoro_voices()


def Generate_Speech(  # <-- MCP tool #4 (Generate Speech)
    text: Annotated[str, "The text to synthesize (English)."],
    speed: Annotated[float, "Speech speed multiplier in 0.5–2.0; 1.0 = normal speed."] = 1.25,
    voice: Annotated[str, "Voice identifier from 54 available options."] = "af_heart",
) -> Tuple[int, np.ndarray]:
    """
    Synthesize speech from text using the Kokoro-82M TTS model.

    This function returns raw audio suitable for a Gradio Audio component and is
    also exposed as an MCP tool. It supports 54 different voices across multiple
    languages and accents including American, British, European, Hindi, Italian,
    Japanese, Portuguese, and Chinese speakers.

    Args:
        text (str): The text to synthesize. Works best with English but supports multiple languages.
        speed (float): Speech speed multiplier in 0.5–2.0; 1.0 = normal speed. Default: 1.25 (slightly brisk).
        voice (str): Voice identifier from 54 available options. Default: 'af_heart'.

    Returns:
        A tuple of (sample_rate_hz, audio_waveform) where:
        - sample_rate_hz: int sample rate in Hz (24_000)
        - audio_waveform: numpy.ndarray float32 mono waveform in range [-1, 1]
    """
    _log_call_start("Generate_Speech", text=_truncate_for_log(text, 200), speed=speed, voice=voice)
    if not text or not text.strip():
        try:
            _log_call_end("Generate_Speech", "error=empty text")
        finally:
            pass
        raise gr.Error("Please provide non-empty text to synthesize.")

    _init_kokoro()
    model = _KOKORO_STATE["model"]
    pipelines = _KOKORO_STATE["pipelines"]

    pipeline = pipelines.get("a")
    if pipeline is None:
        raise gr.Error("Kokoro English pipeline not initialized.")

    # Process ALL segments for longer audio generation
    audio_segments = []
    pack = pipeline.load_voice(voice)

    try:
        # Get all segments first to show progress for long text
        segments = list(pipeline(text, voice, speed))
        total_segments = len(segments)

        # Iterate through ALL segments instead of just the first one
        for segment_idx, (text_chunk, ps, _) in enumerate(segments):
            ref_s = pack[len(ps) - 1]
            try:
                audio = model(ps, ref_s, float(speed))
                audio_segments.append(audio.detach().cpu().numpy())

                # For very long text (>10 segments), show progress every few segments
                if total_segments > 10 and (segment_idx + 1) % 5 == 0:
                    print(f"Progress: Generated {segment_idx + 1}/{total_segments} segments...")

            except Exception as e:
                raise gr.Error(f"Error generating audio for segment {segment_idx + 1}: {str(e)}")

        if not audio_segments:
            raise gr.Error("No audio was generated (empty synthesis result).")

        # Concatenate all segments to create the complete audio
        if len(audio_segments) == 1:
            final_audio = audio_segments[0]
        else:
            final_audio = np.concatenate(audio_segments, axis=0)
            # For multi-segment audio, provide completion info
            duration = len(final_audio) / 24_000
            if total_segments > 1:
                print(f"Completed: {total_segments} segments concatenated into {duration:.1f} seconds of audio")

        # Success logging & return
        _log_call_end("Generate_Speech", f"samples={final_audio.shape[0]} duration_sec={len(final_audio)/24_000:.2f}")
        return 24_000, final_audio

    except gr.Error as e:
        _log_call_end("Generate_Speech", f"gr_error={str(e)}")
        raise  # Re-raise
    except Exception as e:
        _log_call_end("Generate_Speech", f"error={str(e)[:120]}")
        raise gr.Error(f"Error during speech generation: {str(e)}")


# ==========================
# JSON Memory System (MCP tools #7–#10 if enabled)
# ==========================

# Implementation goals (aligned with Gradio MCP docs):
#  * Each function has a rich docstring (used for tool description)
#  * Type hints + Annotated param docs become the schema
#  * Zero external dependencies (pure stdlib JSON file persistence)
#  * Safe concurrent access via a process‑local lock
#  * Human‑readable & recoverable even if file becomes corrupted

MEMORY_FILE = os.path.join(os.path.dirname(__file__), "memories.json")
_MEMORY_LOCK = threading.RLock()
_MAX_MEMORIES = 10_000  # soft cap to avoid unbounded growth


def _now_iso() -> str:
    return datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")


def _load_memories() -> List[Dict[str, str]]:
    """Internal helper: load memory list from disk.

    Returns an empty list if the file does not exist or is unreadable.
    If the JSON is corrupted, a *.corrupt backup is written once and a
    fresh empty list is returned (fail‑open philosophy for tool usage).
    """
    if not os.path.exists(MEMORY_FILE):
        return []
    try:
        with open(MEMORY_FILE, "r", encoding="utf-8") as f:
            data = json.load(f)
        if isinstance(data, list):
            # Filter only dict items containing required keys if present
            cleaned: List[Dict[str, str]] = []
            for item in data:
                if isinstance(item, dict) and "id" in item and "text" in item:
                    cleaned.append(item)
            return cleaned
        return []
    except Exception:
        # Backup corrupted file once
        try:
            backup = MEMORY_FILE + ".corrupt"
            if not os.path.exists(backup):
                os.replace(MEMORY_FILE, backup)
        except Exception:
            pass
        return []


def _save_memories(memories: List[Dict[str, str]]) -> None:
    """Persist memory list atomically to disk (write temp then replace)."""
    tmp_path = MEMORY_FILE + ".tmp"
    with open(tmp_path, "w", encoding="utf-8") as f:
        json.dump(memories, f, ensure_ascii=False, indent=2)
    os.replace(tmp_path, MEMORY_FILE)


def _mem_save(
    text: Annotated[str, "Raw textual content to remember (will be stored verbatim)."],
    tags: Annotated[str, "Optional comma-separated tags for lightweight categorization (e.g. 'user, preference')."] = "",
) -> str:
    """(Internal) Persist a new memory record.

    Summary:
        Adds a memory object to the local JSON store (no external database).

    Stored Fields:
        - id (str, UUID4)
        - text (str, verbatim user content)
        - timestamp (UTC "YYYY-MM-DD HH:MM:SS")
        - tags (str, original comma-separated tag string)

    Behavior / Rules:
        1. Whitespace is trimmed; empty text is rejected.
        2. If the most recent existing memory has identical text, the new one is skipped (light dedupe heuristic).
        3. When total entries exceed _MAX_MEMORIES, oldest entries are pruned (soft cap).
        4. Operation is protected by an in‑process reentrant lock only (no cross‑process locking).

    Returns:
        str: Human readable confirmation containing the new memory UUID (full or prefix

    Security / Privacy:
        Data is plaintext JSON on local disk; do NOT store secrets or regulated data.
    """
    text_clean = (text or "").strip()
    if not text_clean:
        return "Error: memory text is empty."

    with _MEMORY_LOCK:
        memories = _load_memories()
        if memories and memories[-1].get("text") == text_clean:
            return "Skipped: identical to last stored memory."

        mem_id = str(uuid.uuid4())
        entry = {
            "id": mem_id,
            "text": text_clean,
            "timestamp": _now_iso(),
            "tags": tags.strip(),
        }
        memories.append(entry)
        if len(memories) > _MAX_MEMORIES:
            # Drop oldest overflow
            overflow = len(memories) - _MAX_MEMORIES
            memories = memories[overflow:]
        _save_memories(memories)
    return f"Memory saved: {mem_id}"


def _mem_list(
    limit: Annotated[int, "Maximum number of most recent memories to return (1–200)."] = 20,
    include_tags: Annotated[bool, "If true, include tags column in output."] = True,
) -> str:
    """(Internal) List most recent memories.

    Parameters:
        limit (int): Max rows to return; clamped to [1, 200].
        include_tags (bool): Include tags section when True.

    Output Format (one per line):
        <uuid_prefix> [YYYY-MM-DD HH:MM:SS] <text> | tags: <tag list>
        (Tag column omitted if empty or include_tags=False.)

    Returns:
        str: Joined newline string or a friendly "No memories stored." message.
    """
    limit = max(1, min(200, limit))
    with _MEMORY_LOCK:
        memories = _load_memories()
    if not memories:
        return "No memories stored yet."
    # Already chronological (append order); display newest first
    chosen = memories[-limit:][::-1]
    lines: List[str] = []
    for m in chosen:
        base = f"{m['id'][:8]} [{m.get('timestamp','?')}] {m.get('text','')}"
        if include_tags and m.get("tags"):
            base += f" | tags: {m['tags']}"
        lines.append(base)
    omitted = len(memories) - len(chosen)
    if omitted > 0:
        lines.append(f"… ({omitted} older memorie{'s' if omitted!=1 else ''} omitted; total={len(memories)})")
    return "\n".join(lines)


def _mem_search(
    query: Annotated[str, "Case-insensitive substring search; space-separated terms are ANDed."],
    limit: Annotated[int, "Maximum number of matches (1–200)."] = 20,
) -> str:
    """(Internal) Full-text style AND search across text and tags.

    Search Semantics:
        - Split query on whitespace into individual terms.
        - A memory matches only if EVERY term appears (case-insensitive) in the text OR tags field.
        - Results are ordered newest-first (descending timestamp).

    Parameters:
        query (str): Raw user query string; must contain at least one non-space character.
        limit (int): Max rows to return; clamped to [1, 200].

    Returns:
        str: Formatted lines identical to _mem_list output or "No matches".
    """
    q = (query or "").strip()
    if not q:
        return "Error: empty query."
    terms = [t.lower() for t in q.split() if t.strip()]
    if not terms:
        return "Error: no valid search terms."
    limit = max(1, min(200, limit))
    with _MEMORY_LOCK:
        memories = _load_memories()
    # Newest first iteration for early cutoff
    matches: List[Dict[str, str]] = []  # collected (capped at limit)
    total_matches = 0
    for m in reversed(memories):  # newest backward
        hay = (m.get("text", "") + " " + m.get("tags", "")).lower()
        if all(t in hay for t in terms):
            total_matches += 1
            if len(matches) < limit:
                matches.append(m)
    if not matches:
        return f"No matches for: {query}"
    lines = [
        f"{m['id'][:8]} [{m.get('timestamp','?')}] {m.get('text','')}" + (f" | tags: {m['tags']}" if m.get('tags') else "")
        for m in matches
    ]
    omitted = total_matches - len(matches)
    if omitted > 0:
        lines.append(f"… ({omitted} additional match{'es' if omitted!=1 else ''} omitted; total_matches={total_matches})")
    return "\n".join(lines)


def _mem_delete(
    memory_id: Annotated[str, "Full UUID or a unique prefix (>=4 chars) of the memory id to delete."],
) -> str:
    """(Internal) Delete one memory by UUID or unique prefix.

    Parameters:
        memory_id (str): Full UUID4 (preferred) OR a unique prefix (>=4 chars). If prefix is ambiguous, no deletion occurs.

    Returns:
        str: One of: success message, ambiguity notice, or not-found message.

    Safety:
        Ambiguous prefixes are rejected to prevent accidental mass deletion.
    """
    key = (memory_id or "").strip().lower()
    if len(key) < 4:
        return "Error: supply at least 4 characters of the id."
    with _MEMORY_LOCK:
        memories = _load_memories()
        matched = [m for m in memories if m["id"].lower().startswith(key)]
        if not matched:
            return "Memory not found."
        if len(matched) > 1 and key != matched[0]["id"].lower():
            # ambiguous prefix
            sample = ", ".join(m["id"][:8] for m in matched[:5])
            more = "…" if len(matched) > 5 else ""
            return f"Ambiguous prefix (matches {len(matched)} ids: {sample}{more}). Provide more characters."
        # Unique match
        target_id = matched[0]["id"]
        memories = [m for m in memories if m["id"] != target_id]
        _save_memories(memories)
    return f"Deleted memory: {target_id}"


# ======================
# UI: four-tab interface
# ======================

# --- Fetch tab (compact controllable extraction) ---
fetch_interface = gr.Interface(
    fn=Fetch_Webpage,
    inputs=[
        gr.Textbox(label="URL", placeholder="https://example.com/article"),
        gr.Dropdown(
            label="Verbosity", 
            choices=["Brief", "Standard", "Full"], 
            value="Standard",
            info="Brief: 1000 chars, Standard: 3000 chars, Full: complete page"
        ),
    ],
    outputs=gr.Markdown(label="Extracted Markdown"),
    title="Fetch Webpage",
    description=(
        "<div style=\"text-align:center\">Convert any webpage to clean Markdown format with configurable length, preserving structure and formatting while removing navigation and clutter.</div>"
    ),
    api_description=(
        "Fetch a web page and return it converted to Markdown format with configurable length. "
        "Parameters: url (str - absolute URL), verbosity (str - Brief/Standard/Full controlling output length: Brief=1000 chars, Standard=3000 chars, Full=complete page)."
    ),
    flagging_mode="never",
)

# --- Simplified DDG tab (readable output only) ---
concise_interface = gr.Interface(
    fn=Search_DuckDuckGo,
    inputs=[
        gr.Textbox(label="Query", placeholder="topic OR site:example.com"),
        gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
    ],
    outputs=gr.Textbox(label="Search Results", interactive=False),
    title="DuckDuckGo Search",
    description=(
        "<div style=\"text-align:center\">Web search with readable output format. Supports advanced search operators.</div>"
    ),
    api_description=(
        "Run a DuckDuckGo search and return numbered results with URLs, titles, and summaries. "
        "Supports advanced search operators: site: for specific domains, quotes for exact phrases, "
        "OR for alternatives, and - to exclude terms. Examples: 'Python programming', 'site:example.com', "
        "'\"artificial intelligence\"', 'cats -dogs', 'Python OR JavaScript'."
    ),
    flagging_mode="never",
    submit_btn="Search",
)

##

# --- Execute Python tab (simple code interpreter) ---
code_interface = gr.Interface(
    fn=Execute_Python,
    inputs=gr.Code(label="Python Code", language="python"),
    outputs=gr.Textbox(label="Output"),
    title="Python Code Executor",
    description=(
        "<div style=\"text-align:center\">Execute Python code and see the output.</div>"
    ),
    api_description=(
        "Execute arbitrary Python code and return captured stdout or an error message. "
        "Supports any valid Python code including imports, variables, functions, loops, and calculations. "
        "Examples: 'print(2+2)', 'import math; print(math.sqrt(16))', 'for i in range(3): print(i)'. "
        "Parameters: code (str - Python source code to execute). "
        "Returns: Combined stdout output or exception text if execution fails."
    ),
    flagging_mode="never",
)

CSS_STYLES = """
    /* Style only the top-level app title to avoid affecting headings elsewhere */
    .app-title {
        text-align: center;
        /* Ensure main title appears first, then our two subtitle lines */
        display: grid;
        justify-items: center;
    }
    /* Place bold tools list on line 2, normal auth note on line 3 (below title) */
    .app-title::before {
        grid-row: 2;
        content: "Fetch Webpage | Search DuckDuckGo | Python Interpreter | Memory Manager | Kokoro TTS | Image Generation | Video Generation";
        display: block;
        font-size: 1rem;
        font-weight: 700;
        opacity: 0.9;
        margin-top: 6px;
        white-space: pre-wrap;
    }
    .app-title::after {
        grid-row: 3;
        content: "General purpose tools useful for any agent.";
        display: block;
        font-size: 1rem;
        font-weight: 400;
        opacity: 0.9;
        margin-top: 2px;
        white-space: pre-wrap;
    }

    /* Historical safeguard: if any h1 appears inside tabs, don't attach pseudo content */
    .gradio-container [role=\"tabpanel\"] h1::before,
    .gradio-container [role=\"tabpanel\"] h1::after {
        content: none !important;
    }
"""

# --- Kokoro TTS tab (text to speech) ---
available_voices = get_kokoro_voices()
kokoro_interface = gr.Interface(
    fn=Generate_Speech,
    inputs=[
        gr.Textbox(label="Text", placeholder="Type text to synthesize…", lines=4),
        gr.Slider(minimum=0.5, maximum=2.0, value=1.25, step=0.1, label="Speed"),
        gr.Dropdown(
            label="Voice", 
            choices=available_voices, 
            value="af_heart", 
            info="Select from 54 available voices across multiple languages and accents"
        ),
    ],
    outputs=gr.Audio(label="Audio", type="numpy", format="wav", show_download_button=True),
    title="Kokoro TTS",
    description=(
        "<div style=\"text-align:center\">Generate speech with Kokoro-82M. Supports multiple languages and accents. Runs on CPU or CUDA if available.</div>"
    ),
    api_description=(
        "Synthesize speech from text using Kokoro-82M TTS model. Returns (sample_rate, waveform) suitable for playback. "
        "Supports unlimited text length by processing all segments. Voice examples: 'af_heart' (US female), 'am_onyx' (US male), "
        "'bf_emma' (British female), 'af_sky' (US female), 'af_nicole' (US female), "
        "Parameters: text (str), speed (float 0.5–2.0, default 1.25x), voice (str from 54 available options, default 'af_heart'). "
        "Return the generated media to the user in this format `![Alt text](URL)`"
    ),
    flagging_mode="never",
)

def Memory_Manager(
    action: Annotated[Literal["save","list","search","delete"], "Action to perform: save | list | search | delete"],
    text: Annotated[Optional[str], "Text content (Save only)"] = None,
    tags: Annotated[Optional[str], "Comma-separated tags (Save only)"] = None,
    query: Annotated[Optional[str], "Search query terms (Search only)"] = None,
    limit: Annotated[int, "Max results (List/Search only)"] = 20,
    memory_id: Annotated[Optional[str], "Full UUID or unique prefix (Delete only)"] = None,
    include_tags: Annotated[bool, "Include tags (List/Search only)"] = True,
) -> str:
    """Manage lightweight local JSON “memories” (save | list | search | delete) in one MCP tool.

    Overview:
        This tool provides simple, local, append‑only style persistence for short text memories
        with optional tags. Data is stored in a plaintext JSON file ("memories.json") beside the
        application; no external database or network access is required.

    Supported Actions:
        - save   : Store a new memory (requires 'text'; optional 'tags').
        - list   : Return the most recent memories (respects 'limit' + 'include_tags').
        - search : AND match space‑separated terms across text and tags (uses 'query', 'limit').
        - delete : Remove one memory by full UUID or unique prefix (uses 'memory_id').

    Parameter Usage by Action:
        action=save   -> text (required), tags (optional)
        action=list   -> limit, include_tags
        action=search -> query (required), limit, include_tags
        action=delete -> memory_id (required)

    Parameters:
        action (Literal[save|list|search|delete]): Operation selector (case-insensitive).
        text (str): Raw memory content; leading/trailing whitespace trimmed (save only).
        tags (str): Optional comma-separated tags; stored verbatim (save only).
        query (str): Space-separated terms (AND logic, case-insensitive) across text+tags (search only).
        limit (int): Maximum rows for list/search (clamped internally to 1–200).
        memory_id (str): Full UUID or unique prefix (>=4 chars) (delete only).
        include_tags (bool): When True, show tag column in list/search output.

    Storage Format (per entry):
        {"id": "<uuid4>", "text": "<original text>", "timestamp": "YYYY-MM-DD HH:MM:SS", "tags": "tag1, tag2"}

    Lifecycle & Constraints:
        - A soft cap of {_MAX_MEMORIES} entries is enforced by pruning oldest records on save.
        - A light duplicate guard skips saving if the newest existing entry has identical text.
        - All operations are protected by a thread‑local reentrant lock (NOT multi‑process safe).

    Returns:
        str: Human‑readable status / result lines (never raw JSON) suitable for direct model consumption.

    Error Modes:
        - Invalid action -> error string.
        - Missing required field for the chosen action -> explanatory message.
        - Ambiguous or unknown memory_id on delete -> clarification message.

    Security & Privacy:
        Plaintext JSON; do not store secrets, credentials, or regulated personal data.
    """
    act = (action or "").lower().strip()

    # Normalize None -> "" for internal helpers
    text = text or ""
    tags = tags or ""
    query = query or ""
    memory_id = memory_id or ""

    if act == "save":
        if not text.strip():
            return "Error: 'text' is required when action=save."
        return _mem_save(text=text, tags=tags)
    if act == "list":
        return _mem_list(limit=limit, include_tags=include_tags)
    if act == "search":
        if not query.strip():
            return "Error: 'query' is required when action=search."
        return _mem_search(query=query, limit=limit)
    if act == "delete":
        if not memory_id.strip():
            return "Error: 'memory_id' is required when action=delete."
        return _mem_delete(memory_id=memory_id)
    return "Error: invalid action (use save|list|search|delete)."

memory_interface = gr.Interface(
    fn=Memory_Manager,
    inputs=[
        gr.Dropdown(label="Action", choices=["save","list","search","delete"], value="list"),
        gr.Textbox(label="Text", lines=3, placeholder="Memory text (save)"),
        gr.Textbox(label="Tags", placeholder="tag1, tag2"),
        gr.Textbox(label="Query", placeholder="Search terms (search)"),
        gr.Slider(1, 200, value=20, step=1, label="Limit"),
        gr.Textbox(label="Memory ID / Prefix", placeholder="UUID or prefix (delete)"),
        gr.Checkbox(value=True, label="Include Tags"),
    ],
    outputs=gr.Textbox(label="Result", lines=14),
    title="Memory Manager",
    description=(
        "<div style=\"text-align:center\">Lightweight local JSON memory store (no external DB). Choose an Action, fill only the relevant fields, and run.</div>"
    ),
    api_description=(
        "Manage short text memories with optional tags. Actions: save(text,tags), list(limit,include_tags), "
        "search(query,limit,include_tags), delete(memory_id). Returns plaintext JSON. Action parameter is always required. "
        "Use Memory_Manager whenever you are given information worth remembering about the user, and search for memories when relevant."
    ),
    flagging_mode="never",
)

# ==========================
# Image Generation (Serverless)
# ==========================

HF_API_TOKEN = os.getenv("HF_READ_TOKEN")


def Generate_Image(  # <-- MCP tool #5 (Generate Image)
    prompt: Annotated[str, "Text description of the image to generate."],
    model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name' (e.g., black-forest-labs/FLUX.1-Krea-dev)."] = "black-forest-labs/FLUX.1-Krea-dev",
    negative_prompt: Annotated[str, "What should NOT appear in the image." ] = (
        "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
        "missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
        "mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
    ),
    steps: Annotated[int, "Number of denoising steps (1–100). Higher = slower, potentially higher quality."] = 35,
    cfg_scale: Annotated[float, "Classifier-free guidance scale (1–20). Higher = follow the prompt more closely."] = 7.0,
    sampler: Annotated[str, "Sampling method label (UI only). Common options: 'DPM++ 2M Karras', 'DPM++ SDE Karras', 'Euler', 'Euler a', 'Heun', 'DDIM'."] = "DPM++ 2M Karras",
    seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
    width: Annotated[int, "Output width in pixels (64–1216, multiple of 32 recommended)."] = 1024,
    height: Annotated[int, "Output height in pixels (64–1216, multiple of 32 recommended)."] = 1024,
) -> Image.Image:
    """
    Generate a single image from a text prompt using a Hugging Face model via serverless inference.

    Args:
        prompt (str): Text description of the image to generate.
        model_id (str): The Hugging Face model id (creator/model-name). Defaults to "black-forest-labs/FLUX.1-Krea-dev".
        negative_prompt (str): What should NOT appear in the image.
        steps (int): Number of denoising steps (1–100). Higher can improve quality.
        cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
        sampler (str): Sampling method label for UI; not all providers expose this control.
        seed (int): Random seed. Use -1 to randomize on each call.
        width (int): Output width in pixels (64–1216; multiples of 32 recommended).
        height (int): Output height in pixels (64–1216; multiples of 32 recommended).

    Returns:
        PIL.Image.Image: The generated image.

    Error modes:
        - Raises gr.Error with a user-friendly message on auth/model/load errors.
    """
    _log_call_start("Generate_Image", prompt=_truncate_for_log(prompt, 200), model_id=model_id, steps=steps, cfg_scale=cfg_scale, seed=seed, size=f"{width}x{height}")
    if not prompt or not prompt.strip():
        _log_call_end("Generate_Image", "error=empty prompt")
        raise gr.Error("Please provide a non-empty prompt.")

    # Slightly enhance prompt for quality (kept consistent with Serverless space)
    enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."

    # Try multiple providers for resilience
    providers = ["auto", "replicate", "fal-ai"]
    last_error: Exception | None = None

    for provider in providers:
        try:
            client = InferenceClient(api_key=HF_API_TOKEN, provider=provider)
            image = client.text_to_image(
                prompt=enhanced_prompt,
                negative_prompt=negative_prompt,
                model=model_id,
                width=width,
                height=height,
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                seed=seed if seed != -1 else random.randint(1, 1_000_000_000),
            )
            _log_call_end("Generate_Image", f"provider={provider} size={image.size}")
            return image
        except Exception as e:  # try next provider, transform last one to friendly error
            last_error = e
            continue

    # If we reach here, all providers failed
    msg = str(last_error) if last_error else "Unknown error"
    if "404" in msg:
        raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and your HF token access.")
    if "503" in msg:
        raise gr.Error("The model is warming up. Please try again shortly.")
    if "401" in msg or "403" in msg:
        raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
    # Map common provider auth messages to the same friendly guidance
    low = msg.lower()
    if ("api_key" in low) or ("hf auth login" in low) or ("unauthorized" in low) or ("forbidden" in low):
        raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
    _log_call_end("Generate_Image", f"error={_truncate_for_log(msg, 200)}")
    raise gr.Error(f"Image generation failed: {msg}")


image_generation_interface = gr.Interface(
    fn=Generate_Image,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=2),
        gr.Textbox(label="Model", value="black-forest-labs/FLUX.1-Krea-dev", placeholder="creator/model-name"),
        gr.Textbox(
            label="Negative Prompt",
            value=(
                "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
                "missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
                "mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
            ),
            lines=2,
        ),
        gr.Slider(minimum=1, maximum=100, value=35, step=1, label="Steps"),
        gr.Slider(minimum=1.0, maximum=20.0, value=7.0, step=0.1, label="CFG Scale"),
        gr.Radio(label="Sampler", value="DPM++ 2M Karras", choices=[
            "DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"
        ]),
        gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
        gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Width"),
        gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Height"),
    ],
    outputs=gr.Image(label="Generated Image"),
    title="Image Generation",
    description=(
        "<div style=\"text-align:center\">Generate images via Hugging Face serverless inference. "
        "Default model is FLUX.1-Krea-dev.</div>"
    ),
    api_description=(
        "Generate a single image from a text prompt using a Hugging Face model via serverless inference. "
        "Supports creative prompts like 'a serene mountain landscape at sunset', 'portrait of a wise owl', "
        "'futuristic city with flying cars'. Default model: FLUX.1-Krea-dev. "
        "Parameters: prompt (str), model_id (str, creator/model-name), negative_prompt (str), steps (int, 1–100), "
        "cfg_scale (float, 1–20), sampler (str), seed (int, -1=random), width/height (int, 64–1216). "
        "Returns a PIL.Image. Return the generated media to the user in this format `![Alt text](URL)`"
    ),
    flagging_mode="never",
    # Only expose to MCP when HF token is provided; UI tab is always visible
    show_api=bool(os.getenv("HF_READ_TOKEN")),
)

# ==========================
# Video Generation (Serverless)
# ==========================

def _write_video_tmp(data_iter_or_bytes: object, suffix: str = ".mp4") -> str:
    """Write video bytes or iterable of bytes to a system temporary file and return its path.

    This avoids polluting the project directory. The file is created in the OS temp
    location; Gradio will handle serving & offering the download button.
    """
    fd, fname = tempfile.mkstemp(suffix=suffix)
    try:
        with os.fdopen(fd, "wb") as f:
            if isinstance(data_iter_or_bytes, (bytes, bytearray)):
                f.write(data_iter_or_bytes)  # type: ignore[arg-type]
            elif hasattr(data_iter_or_bytes, "read"):
                f.write(data_iter_or_bytes.read())  # type: ignore[call-arg]
            elif hasattr(data_iter_or_bytes, "content"):
                f.write(data_iter_or_bytes.content)  # type: ignore[attr-defined]
            elif hasattr(data_iter_or_bytes, "__iter__") and not isinstance(data_iter_or_bytes, (str, dict)):
                for chunk in data_iter_or_bytes:  # type: ignore[assignment]
                    if chunk:
                        f.write(chunk)
            else:
                raise gr.Error("Unsupported video data type returned by provider.")
    except Exception:
        # Clean up if writing failed
        try:
            os.remove(fname)
        except Exception:
            pass
        raise
    return fname


HF_VIDEO_TOKEN = os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")


def Generate_Video(  # <-- MCP tool #6 (Generate Video)
    prompt: Annotated[str, "Text description of the video to generate (e.g., 'a red fox running through a snowy forest at sunrise')."],
    model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name'. Defaults to Wan-AI/Wan2.2-T2V-A14B."] = "Wan-AI/Wan2.2-T2V-A14B",
    negative_prompt: Annotated[str, "What should NOT appear in the video."] = "",
    steps: Annotated[int, "Number of denoising steps (1–100). Higher can improve quality but is slower."] = 25,
    cfg_scale: Annotated[float, "Guidance scale (1–20). Higher = follow the prompt more closely, lower = more creative."] = 3.5,
    seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
    width: Annotated[int, "Output width in pixels (multiples of 8 recommended)."] = 768,
    height: Annotated[int, "Output height in pixels (multiples of 8 recommended)."] = 768,
    fps: Annotated[int, "Frames per second of the output video (e.g., 24)."] = 24,
    duration: Annotated[float, "Target duration in seconds (provider/model dependent, commonly 2–6s)."] = 4.0,
) -> str:
    """
    Generate a short video from a text prompt using a Hugging Face model via serverless inference.

    Args:
        prompt (str): Text description of the video to generate.
    model_id (str): The Hugging Face model id (creator/model-name). Defaults to "Wan-AI/Wan2.2-T2V-A14B".
        negative_prompt (str): What should NOT appear in the video.
        steps (int): Number of denoising steps (1–100). Higher can improve quality but is slower.
        cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
        seed (int): Random seed. Use -1 to randomize on each call.
        width (int): Output width in pixels.
        height (int): Output height in pixels.
        fps (int): Frames per second.
        duration (float): Target duration in seconds.

    Returns:
        str: Path to an MP4 file on disk (Gradio will serve this file; MCP converts it to a file URL).

    Error modes:
        - Raises gr.Error with a user-friendly message on auth/model/load errors or unsupported parameters.
    """
    _log_call_start("Generate_Video", prompt=_truncate_for_log(prompt, 160), model_id=model_id, steps=steps, cfg_scale=cfg_scale, fps=fps, duration=duration, size=f"{width}x{height}")
    if not prompt or not prompt.strip():
        _log_call_end("Generate_Video", "error=empty prompt")
        raise gr.Error("Please provide a non-empty prompt.")

    if not HF_VIDEO_TOKEN:
        # Still attempt without a token (public models), but warn earlier if it fails.
        pass

    providers = ["auto", "replicate", "fal-ai"]
    last_error: Exception | None = None

    # Build a common parameters dict. Providers may ignore unsupported keys.
    parameters = {
        "negative_prompt": negative_prompt or None,
        "num_inference_steps": steps,
        "guidance_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1_000_000_000),
        "width": width,
        "height": height,
        "fps": fps,
        # Some providers/models expect num_frames instead of duration; we pass both-friendly value
        # when supported; they may be ignored by the backend.
        "duration": duration,
    }

    for provider in providers:
        try:
            client = InferenceClient(api_key=HF_VIDEO_TOKEN, provider=provider)
            # Use the documented text_to_video API with correct parameters
            if hasattr(client, "text_to_video"):
                # Calculate num_frames from duration and fps if both provided
                num_frames = int(duration * fps) if duration and fps else None
                
                # Build extra_body for provider-specific parameters
                extra_body = {}
                if width:
                    extra_body["width"] = width
                if height:
                    extra_body["height"] = height
                if fps:
                    extra_body["fps"] = fps
                if duration:
                    extra_body["duration"] = duration
                
                result = client.text_to_video(
                    prompt=prompt,
                    model=model_id,
                    guidance_scale=cfg_scale,
                    negative_prompt=[negative_prompt] if negative_prompt else None,
                    num_frames=num_frames,
                    num_inference_steps=steps,
                    seed=parameters["seed"],
                    extra_body=extra_body if extra_body else None,
                )
            else:
                # Generic POST fallback for older versions
                result = client.post(
                    model=model_id,
                    json={
                        "inputs": prompt,
                        "parameters": {k: v for k, v in parameters.items() if v is not None},
                    },
                )

            # Save output to an .mp4
            path = _write_video_tmp(result, suffix=".mp4")
            try:
                size = os.path.getsize(path)
            except Exception:
                size = -1
            _log_call_end("Generate_Video", f"provider={provider} path={os.path.basename(path)} bytes={size}")
            return path
        except Exception as e:
            last_error = e
            continue

    msg = str(last_error) if last_error else "Unknown error"
    if "404" in msg:
        raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and HF token access.")
    if "503" in msg:
        raise gr.Error("The model is warming up. Please try again shortly.")
    if "401" in msg or "403" in msg:
        raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
    # Map common provider auth messages to the same friendly guidance
    low = msg.lower()
    if ("api_key" in low) or ("hf auth login" in low) or ("unauthorized" in low) or ("forbidden" in low):
        raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
    _log_call_end("Generate_Video", f"error={_truncate_for_log(msg, 200)}")
    raise gr.Error(f"Video generation failed: {msg}")


video_generation_interface = gr.Interface(
    fn=Generate_Video,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter a prompt for the video", lines=2),
    gr.Textbox(label="Model", value="Wan-AI/Wan2.2-T2V-A14B", placeholder="creator/model-name"),
        gr.Textbox(label="Negative Prompt", value="", lines=2),
        gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Steps"),
        gr.Slider(minimum=1.0, maximum=20.0, value=3.5, step=0.1, label="CFG Scale"),
        gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
        gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Width"),
        gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Height"),
        gr.Slider(minimum=4, maximum=60, value=24, step=1, label="FPS"),
        gr.Slider(minimum=1.0, maximum=10.0, value=4.0, step=0.5, label="Duration (s)"),
    ],
    outputs=gr.Video(label="Generated Video", show_download_button=True, format="mp4"),
    title="Video Generation",
    description=(
    "<div style=\"text-align:center\">Generate short videos via Hugging Face serverless inference. "
    "Default model is Wan2.2-T2V-A14B.</div>"
    ),
    api_description=(
        "Generate a short video from a text prompt using a Hugging Face model via serverless inference. "
        "Create dynamic scenes like 'a red fox running through a snowy forest at sunrise', 'waves crashing on a rocky shore', "
        "'time-lapse of clouds moving across a blue sky'. Default model: Wan2.2-T2V-A14B (2-6 second videos). "
        "Parameters: prompt (str), model_id (str), negative_prompt (str), steps (int), cfg_scale (float), seed (int), "
        "width/height (int), fps (int), duration (float in seconds). Returns MP4 file path. "
        "Return the generated media to the user in this format `![Alt text](URL)`"
    ),
    flagging_mode="never",
    # Only expose to MCP when HF token is provided; UI tab is always visible
    show_api=bool(os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")),
)

_interfaces = [
    fetch_interface,
    concise_interface,
    code_interface,
    memory_interface,     # Always visible in UI
    kokoro_interface,
    image_generation_interface,  # Always visible in UI
    video_generation_interface,  # Always visible in UI
]
_tab_names = [
    "Fetch Webpage",
    "DuckDuckGo Search",
    "Python Code Executor",
    "Memory Manager",
    "Kokoro TTS",
    "Image Generation",
    "Video Generation",
]

with gr.Blocks(title="Nymbo/Tools MCP", theme="Nymbo/Nymbo_Theme", css=CSS_STYLES) as demo:
    # Page title (scoped styling via .app-title to avoid affecting other headings)
    gr.HTML("<h1 class='app-title'>Nymbo/Tools MCP</h1>")

    # Collapsed Information accordion (appears below subtitle and above tabs)
    with gr.Accordion("Information", open=False):
        gr.Markdown(
            """
            
            ## Enable Image & Video Generation

            The `Generate_Image` and `Generate_Video` tools require a `HF_READ_TOKEN` present in environment variables (secrets). Please duplicate this space and provide an API key to enable them, or clone and run locally. 

            Both tools are hidden as MCP tools without authentication to avoid cluttering context, but they remain visible in the Gradio UI.
            
            ---
            
            ## Persistent Memories

            Memories in this public HF space are written to the space's running container, and they are deleted when the space restarts. The contents are also visible to everyone. Do not store personal information in this public demo.

            When running locally, memories are stored to a `memories.json` file in the root of the repo. Please clone and run locally to keep your information private.
            """
        )

    # Existing tool tabs
    gr.TabbedInterface(interface_list=_interfaces, tab_names=_tab_names)

# Launch the UI and expose all functions as MCP tools in one server
if __name__ == "__main__":
    demo.launch(mcp_server=True)