File size: 6,916 Bytes
d369d82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import annotations

import os
import random
from typing import Annotated

import gradio as gr
from PIL import Image
from huggingface_hub import InferenceClient

from app import _log_call_end, _log_call_start, _truncate_for_log

HF_API_TOKEN = os.getenv("HF_READ_TOKEN")


def Generate_Image(

    prompt: Annotated[str, "Text description of the image to generate."],

    model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name' (e.g., black-forest-labs/FLUX.1-Krea-dev)."] = "black-forest-labs/FLUX.1-Krea-dev",

    negative_prompt: Annotated[str, "What should NOT appear in the image."] = (

        "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "

        "missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "

        "mutated, ugly, disgusting, blurry, amputation, misspellings, typos"

    ),

    steps: Annotated[int, "Number of denoising steps (1–100). Higher = slower, potentially higher quality."] = 35,

    cfg_scale: Annotated[float, "Classifier-free guidance scale (1–20). Higher = follow the prompt more closely."] = 7.0,

    sampler: Annotated[str, "Sampling method label (UI only). Common options: 'DPM++ 2M Karras', 'DPM++ SDE Karras', 'Euler', 'Euler a', 'Heun', 'DDIM'."] = "DPM++ 2M Karras",

    seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,

    width: Annotated[int, "Output width in pixels (64–1216, multiple of 32 recommended)."] = 1024,

    height: Annotated[int, "Output height in pixels (64–1216, multiple of 32 recommended)."] = 1024,

) -> Image.Image:
    _log_call_start(
        "Generate_Image",
        prompt=_truncate_for_log(prompt, 200),
        model_id=model_id,
        steps=steps,
        cfg_scale=cfg_scale,
        seed=seed,
        size=f"{width}x{height}",
    )
    if not prompt or not prompt.strip():
        _log_call_end("Generate_Image", "error=empty prompt")
        raise gr.Error("Please provide a non-empty prompt.")
    enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    providers = ["auto", "replicate", "fal-ai"]
    last_error: Exception | None = None
    for provider in providers:
        try:
            client = InferenceClient(api_key=HF_API_TOKEN, provider=provider)
            image = client.text_to_image(
                prompt=enhanced_prompt,
                negative_prompt=negative_prompt,
                model=model_id,
                width=width,
                height=height,
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                seed=seed if seed != -1 else random.randint(1, 1_000_000_000),
            )
            _log_call_end("Generate_Image", f"provider={provider} size={image.size}")
            return image
        except Exception as exc:  # pylint: disable=broad-except
            last_error = exc
            continue
    msg = str(last_error) if last_error else "Unknown error"
    lowered = msg.lower()
    if "404" in msg:
        raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and your HF token access.")
    if "503" in msg:
        raise gr.Error("The model is warming up. Please try again shortly.")
    if "401" in msg or "403" in msg:
        raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
    if ("api_key" in lowered) or ("hf auth login" in lowered) or ("unauthorized" in lowered) or ("forbidden" in lowered):
        raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
    _log_call_end("Generate_Image", f"error={_truncate_for_log(msg, 200)}")
    raise gr.Error(f"Image generation failed: {msg}")


def build_interface() -> gr.Interface:
    return gr.Interface(
        fn=Generate_Image,
        inputs=[
            gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=2),
            gr.Textbox(
                label="Model",
                value="black-forest-labs/FLUX.1-Krea-dev",
                placeholder="creator/model-name",
                max_lines=1,
                info="<a href=\"https://huggingface.co/models?pipeline_tag=text-to-image&inference_provider=nebius,cerebras,novita,fireworks-ai,together,fal-ai,groq,featherless-ai,nscale,hyperbolic,sambanova,cohere,replicate,scaleway,publicai,hf-inference&sort=trending\" target=\"_blank\" rel=\"noopener noreferrer\">Browse models</a>",
            ),
            gr.Textbox(
                label="Negative Prompt",
                value=(
                    "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
                    "missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
                    "mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
                ),
                lines=2,
            ),
            gr.Slider(minimum=1, maximum=100, value=35, step=1, label="Steps"),
            gr.Slider(minimum=1.0, maximum=20.0, value=7.0, step=0.1, label="CFG Scale"),
            gr.Radio(
                label="Sampler",
                value="DPM++ 2M Karras",
                choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"],
            ),
            gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
            gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Width"),
            gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Height"),
        ],
        outputs=gr.Image(label="Generated Image"),
        title="Generate Image",
        description=(
            "<div style=\"text-align:center\">Generate images via Hugging Face serverless inference. "
            "Default model is FLUX.1-Krea-dev.</div>"
        ),
        api_description=(
            "Generate a single image from a text prompt using a Hugging Face model via serverless inference. "
            "Supports creative prompts like 'a serene mountain landscape at sunset', 'portrait of a wise owl', "
            "'futuristic city with flying cars'. Default model: FLUX.1-Krea-dev. "
            "Parameters: prompt (str), model_id (str, creator/model-name), negative_prompt (str), steps (int, 1–100), "
            "cfg_scale (float, 1–20), sampler (str), seed (int, -1=random), width/height (int, 64–1216). "
            "Returns a PIL.Image. Return the generated media to the user in this format `![Alt text](URL)`"
        ),
        flagging_mode="never",
        show_api=bool(os.getenv("HF_READ_TOKEN")),
    )


__all__ = ["Generate_Image", "build_interface"]