Tools / app.py
Nymbo's picture
Python Executor tool now can create and output files
159b3ad verified
raw
history blame
90.3 kB
# Purpose: One Space that offers up to seven tools/tabs (all exposed as MCP tools):
# 1) Fetch — convert webpages to clean Markdown format
# 2) DuckDuckGo Search — compact JSONL search output (short keys to minimize tokens)
# 3) Python Code Executor — run Python code and capture stdout/errors
# 4) Kokoro TTS — synthesize speech from text using Kokoro-82M with 54 voice options
# 5) Memory Manager — lightweight JSON-based local memory store
# 6) Image Generation - HF serverless inference providers (requires HF_READ_TOKEN)
# 7) Video Generation - HF serverless inference providers (requires HF_READ_TOKEN)
from __future__ import annotations
import re
import json
import sys
import os
import random
from io import StringIO
from typing import List, Dict, Tuple, Annotated, Literal, Optional
import gradio as gr
import requests
from bs4 import BeautifulSoup
from markdownify import markdownify as md
from readability import Document
from urllib.parse import urlparse
from ddgs import DDGS
from PIL import Image
from huggingface_hub import InferenceClient
import time
import tempfile
import uuid
import threading
from datetime import datetime
# Optional imports for Kokoro TTS (loaded lazily)
import numpy as np
try:
import torch # type: ignore
except Exception: # pragma: no cover - optional dependency
torch = None # type: ignore
try:
from kokoro import KModel, KPipeline # type: ignore
except Exception: # pragma: no cover - optional dependency
KModel = None # type: ignore
KPipeline = None # type: ignore
# ==============================
# Fetch: Enhanced HTTP + extraction utils
# ==============================
def _http_get_enhanced(url: str) -> requests.Response:
"""
Download the page with enhanced headers, timeout handling, and better error recovery.
"""
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Accept-Language": "en-US,en;q=0.9",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Accept-Encoding": "gzip, deflate, br",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1",
}
# Apply rate limiting
_fetch_rate_limiter.acquire()
try:
response = requests.get(
url,
headers=headers,
timeout=30, # Increased timeout
allow_redirects=True,
stream=False
)
response.raise_for_status()
return response
except requests.exceptions.Timeout:
raise requests.exceptions.RequestException("Request timed out. The webpage took too long to respond.")
except requests.exceptions.ConnectionError:
raise requests.exceptions.RequestException("Connection error. Please check the URL and your internet connection.")
except requests.exceptions.HTTPError as e:
if response.status_code == 403:
raise requests.exceptions.RequestException("Access forbidden. The website may be blocking automated requests.")
elif response.status_code == 404:
raise requests.exceptions.RequestException("Page not found. Please check the URL.")
elif response.status_code == 429:
raise requests.exceptions.RequestException("Rate limited. Please try again in a few minutes.")
else:
raise requests.exceptions.RequestException(f"HTTP error {response.status_code}: {str(e)}")
def _normalize_whitespace(text: str) -> str:
"""
Squeeze extra spaces and blank lines to keep things compact.
(Layman's terms: tidy up the text so it’s not full of weird spacing.)
"""
text = re.sub(r"[ \t\u00A0]+", " ", text)
text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text.strip())
return text.strip()
def _truncate(text: str, max_chars: int) -> Tuple[str, bool]:
"""
Cut text if it gets too long; return the text and whether we trimmed.
(Layman's terms: shorten long text and tell us if we had to cut it.)
"""
if max_chars is None or max_chars <= 0 or len(text) <= max_chars:
return text, False
return text[:max_chars].rstrip() + " …", True
def _shorten(text: str, limit: int) -> str:
"""
Hard cap a string with an ellipsis to keep tokens small.
(Layman's terms: force a string to a max length with an ellipsis.)
"""
if limit <= 0 or len(text) <= limit:
return text
return text[: max(0, limit - 1)].rstrip() + "…"
def _domain_of(url: str) -> str:
"""
Show a friendly site name like "example.com".
(Layman's terms: pull the website's domain.)
"""
try:
return urlparse(url).netloc or ""
except Exception:
return ""
def _meta(soup: BeautifulSoup, name: str) -> str | None:
tag = soup.find("meta", attrs={"name": name})
return tag.get("content") if tag and tag.has_attr("content") else None
def _og(soup: BeautifulSoup, prop: str) -> str | None:
tag = soup.find("meta", attrs={"property": prop})
return tag.get("content") if tag and tag.has_attr("content") else None
def _extract_metadata(soup: BeautifulSoup, final_url: str) -> Dict[str, str]:
"""
Pull the useful bits: title, description, site name, canonical URL, language, etc.
(Layman's terms: gather page basics like title/description/address.)
"""
meta: Dict[str, str] = {}
# Title preference: <title> > og:title > twitter:title
title_candidates = [
(soup.title.string if soup.title and soup.title.string else None),
_og(soup, "og:title"),
_meta(soup, "twitter:title"),
]
meta["title"] = next((t.strip() for t in title_candidates if t and t.strip()), "")
# Description preference: description > og:description > twitter:description
desc_candidates = [
_meta(soup, "description"),
_og(soup, "og:description"),
_meta(soup, "twitter:description"),
]
meta["description"] = next((d.strip() for d in desc_candidates if d and d.strip()), "")
# Canonical link (helps dedupe)
link_canonical = soup.find("link", rel=lambda v: v and "canonical" in v)
meta["canonical"] = (link_canonical.get("href") or "").strip() if link_canonical else ""
# Site name + language info if present
meta["site_name"] = (_og(soup, "og:site_name") or "").strip()
html_tag = soup.find("html")
meta["lang"] = (html_tag.get("lang") or "").strip() if html_tag else ""
# Final URL + domain
meta["fetched_url"] = final_url
meta["domain"] = _domain_of(final_url)
return meta
def _extract_main_text(html: str) -> Tuple[str, BeautifulSoup]:
"""
Use Readability to isolate the main article and turn it into clean text.
Returns (clean_text, soup_of_readable_html).
(Layman's terms: find the real article text and clean it.)
"""
# Simplified article HTML from Readability
doc = Document(html)
readable_html = doc.summary(html_partial=True)
# Parse simplified HTML
s = BeautifulSoup(readable_html, "lxml")
# Remove noisy tags
for sel in ["script", "style", "noscript", "iframe", "svg"]:
for tag in s.select(sel):
tag.decompose()
# Keep paragraphs, list items, and subheadings for structure without bloat
text_parts: List[str] = []
for p in s.find_all(["p", "li", "h2", "h3", "h4", "blockquote"]):
chunk = p.get_text(" ", strip=True)
if chunk:
text_parts.append(chunk)
clean_text = _normalize_whitespace("\n\n".join(text_parts))
return clean_text, s
def _extract_links_from_soup(soup: BeautifulSoup, base_url: str) -> str:
"""
Extract all links from the page and return as formatted text.
"""
links = []
for link in soup.find_all("a", href=True):
href = link.get("href")
text = link.get_text(strip=True)
# Make relative URLs absolute
if href.startswith("http"):
full_url = href
elif href.startswith("//"):
full_url = "https:" + href
elif href.startswith("/"):
from urllib.parse import urljoin
full_url = urljoin(base_url, href)
else:
from urllib.parse import urljoin
full_url = urljoin(base_url, href)
if text and href not in ["#", "javascript:void(0)"]:
links.append(f"- [{text}]({full_url})")
if not links:
return "No links found on this page."
# Add title if present
title = soup.find("title")
title_text = title.get_text(strip=True) if title else "Links from webpage"
return f"# {title_text}\n\n" + "\n".join(links)
def _fullpage_markdown_from_soup(full_soup: BeautifulSoup, base_url: str, strip_selectors: str = "") -> str:
# Remove custom selectors first if provided
if strip_selectors:
selectors = [s.strip() for s in strip_selectors.split(",") if s.strip()]
for selector in selectors:
try:
for element in full_soup.select(selector):
element.decompose()
except Exception:
# Invalid CSS selector, skip it
continue
# Remove unwanted elements globally
for element in full_soup.select("script, style, nav, footer, header, aside"):
element.decompose()
# Try common main-content containers, then fallback to body
main = (
full_soup.find("main")
or full_soup.find("article")
or full_soup.find("div", class_=re.compile(r"content|main|post|article", re.I))
or full_soup.find("body")
)
if not main:
return "No main content found on the webpage."
# Convert selected HTML to Markdown
markdown_text = md(str(main), heading_style="ATX")
# Clean up the markdown similar to web-scraper
markdown_text = re.sub(r"\n{3,}", "\n\n", markdown_text)
markdown_text = re.sub(r"\[\s*\]\([^)]*\)", "", markdown_text) # empty links
markdown_text = re.sub(r"[ \t]+", " ", markdown_text)
markdown_text = markdown_text.strip()
# Add title if present
title = full_soup.find("title")
if title and title.get_text(strip=True):
markdown_text = f"# {title.get_text(strip=True)}\n\n{markdown_text}"
return markdown_text or "No content could be extracted."
def _truncate_markdown(markdown: str, max_chars: int) -> str:
"""
Truncate markdown content to a maximum character count while preserving structure.
Tries to break at paragraph boundaries when possible.
"""
if len(markdown) <= max_chars:
return markdown
# Find a good break point near the limit
truncated = markdown[:max_chars]
# Try to break at the end of a paragraph (double newline)
last_paragraph = truncated.rfind('\n\n')
if last_paragraph > max_chars * 0.7: # If we find a paragraph break in the last 30%
truncated = truncated[:last_paragraph]
# Try to break at the end of a sentence
elif '.' in truncated[-100:]: # Look for a period in the last 100 chars
last_period = truncated.rfind('.')
if last_period > max_chars * 0.8: # If we find a period in the last 20%
truncated = truncated[:last_period + 1]
return truncated.rstrip() + "\n\n> *[Content truncated for brevity]*"
def Fetch_Webpage( # <-- MCP tool #1 (Fetch)
url: Annotated[str, "The absolute URL to fetch (must return HTML)."],
max_chars: Annotated[int, "Maximum characters to return (0 = no limit, full page content)."] = 3000,
strip_selectors: Annotated[str, "CSS selectors to remove (comma-separated, e.g., '.header, .footer, nav')."] = "",
url_scraper: Annotated[bool, "Extract only links from the page instead of content."] = False,
) -> str:
"""
Fetch a web page and return it converted to Markdown format with configurable options.
This function retrieves a webpage and either converts its main content to clean Markdown
or extracts all links from the page. It automatically removes navigation, footers,
scripts, and other non-content elements, plus any custom selectors you specify.
Args:
url (str): The absolute URL to fetch (must return HTML).
max_chars (int): Maximum characters to return. Use 0 for no limit (full page).
strip_selectors (str): CSS selectors to remove before processing (comma-separated).
url_scraper (bool): If True, extract only links instead of content.
Returns:
str: Either the webpage content converted to Markdown or a list of all links,
depending on the url_scraper setting. Content is length-limited by max_chars.
"""
_log_call_start("Fetch_Webpage", url=url, max_chars=max_chars, strip_selectors=strip_selectors, url_scraper=url_scraper)
if not url or not url.strip():
result = "Please enter a valid URL."
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
try:
resp = _http_get_enhanced(url)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
result = f"An error occurred: {e}"
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
final_url = str(resp.url)
ctype = resp.headers.get("Content-Type", "")
if "html" not in ctype.lower():
result = f"Unsupported content type for extraction: {ctype or 'unknown'}"
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
# Decode to text
resp.encoding = resp.encoding or resp.apparent_encoding
html = resp.text
# Parse HTML
full_soup = BeautifulSoup(html, "lxml")
if url_scraper:
# Extract links mode
result = _extract_links_from_soup(full_soup, final_url)
else:
# Convert to markdown mode
result = _fullpage_markdown_from_soup(full_soup, final_url, strip_selectors)
# Apply max_chars truncation if specified
if max_chars > 0 and len(result) > max_chars:
result = _truncate_markdown(result, max_chars)
_log_call_end("Fetch_Webpage", f"chars={len(result)}, url_scraper={url_scraper}")
return result
# ============================================
# DuckDuckGo Search: Enhanced with error handling & rate limiting
# ============================================
import asyncio
from datetime import datetime, timedelta
class RateLimiter:
def __init__(self, requests_per_minute: int = 30):
self.requests_per_minute = requests_per_minute
self.requests = []
def acquire(self):
"""Synchronous rate limiting for non-async context"""
now = datetime.now()
# Remove requests older than 1 minute
self.requests = [
req for req in self.requests if now - req < timedelta(minutes=1)
]
if len(self.requests) >= self.requests_per_minute:
# Wait until we can make another request
wait_time = 60 - (now - self.requests[0]).total_seconds()
if wait_time > 0:
time.sleep(max(1, wait_time)) # At least 1 second wait
self.requests.append(now)
# Global rate limiters
_search_rate_limiter = RateLimiter(requests_per_minute=20)
_fetch_rate_limiter = RateLimiter(requests_per_minute=25)
# ==============================
# Logging Helpers (print I/O to terminal)
# ==============================
def _truncate_for_log(value: str, limit: int = 500) -> str:
"""Truncate long strings for concise terminal logging."""
if len(value) <= limit:
return value
return value[:limit - 1] + "…"
def _serialize_input(val): # type: ignore[return-any]
"""Best-effort compact serialization of arbitrary input values for logging."""
try:
if isinstance(val, (str, int, float, bool)) or val is None:
return val
if isinstance(val, (list, tuple)):
return [_serialize_input(v) for v in list(val)[:10]] + (["…"] if len(val) > 10 else []) # type: ignore[index]
if isinstance(val, dict):
out = {}
for i, (k, v) in enumerate(val.items()):
if i >= 12:
out["…"] = "…"
break
out[str(k)] = _serialize_input(v)
return out
return repr(val)[:120]
except Exception:
return "<unserializable>"
def _log_call_start(func_name: str, **kwargs) -> None:
try:
compact = {k: _serialize_input(v) for k, v in kwargs.items()}
print(f"[TOOL CALL] {func_name} inputs: {json.dumps(compact, ensure_ascii=False)[:800]}", flush=True)
except Exception as e: # pragma: no cover - logging safety
print(f"[TOOL CALL] {func_name} (failed to log inputs: {e})", flush=True)
def _log_call_end(func_name: str, output_desc: str) -> None:
try:
print(f"[TOOL RESULT] {func_name} output: {output_desc}", flush=True)
except Exception as e: # pragma: no cover
print(f"[TOOL RESULT] {func_name} (failed to log output: {e})", flush=True)
def _extract_date_from_snippet(snippet: str) -> str:
"""
Extract publication date from search result snippet using common patterns.
"""
import re
from datetime import datetime
if not snippet:
return ""
# Common date patterns
date_patterns = [
# ISO format: 2023-12-25, 2023/12/25
r'\b(\d{4}[-/]\d{1,2}[-/]\d{1,2})\b',
# US format: Dec 25, 2023 | December 25, 2023
r'\b([A-Za-z]{3,9}\s+\d{1,2},?\s+\d{4})\b',
# EU format: 25 Dec 2023 | 25 December 2023
r'\b(\d{1,2}\s+[A-Za-z]{3,9}\s+\d{4})\b',
# Relative: "2 days ago", "1 week ago", "3 months ago"
r'\b(\d+\s+(?:day|week|month|year)s?\s+ago)\b',
# Common prefixes: "Published: ", "Updated: ", "Posted: "
r'(?:Published|Updated|Posted):\s*([^,\n]+?)(?:[,\n]|$)',
]
for pattern in date_patterns:
matches = re.findall(pattern, snippet, re.IGNORECASE)
if matches:
return matches[0].strip()
return ""
def _format_search_result(result: dict, search_type: str, index: int) -> list[str]:
"""
Format a single search result based on the search type.
Returns a list of strings to be joined with newlines.
"""
lines = []
if search_type == "text":
title = result.get("title", "").strip()
url = result.get("href", "").strip()
snippet = result.get("body", "").strip()
date = _extract_date_from_snippet(snippet)
lines.append(f"{index}. {title}")
lines.append(f" URL: {url}")
if snippet:
lines.append(f" Summary: {snippet}")
if date:
lines.append(f" Date: {date}")
elif search_type == "news":
title = result.get("title", "").strip()
url = result.get("url", "").strip()
body = result.get("body", "").strip()
date = result.get("date", "").strip()
source = result.get("source", "").strip()
lines.append(f"{index}. {title}")
lines.append(f" URL: {url}")
if source:
lines.append(f" Source: {source}")
if date:
lines.append(f" Date: {date}")
if body:
lines.append(f" Summary: {body}")
elif search_type == "images":
title = result.get("title", "").strip()
image_url = result.get("image", "").strip()
source_url = result.get("url", "").strip()
source = result.get("source", "").strip()
width = result.get("width", "")
height = result.get("height", "")
lines.append(f"{index}. {title}")
lines.append(f" Image: {image_url}")
lines.append(f" Source: {source_url}")
if source:
lines.append(f" Publisher: {source}")
if width and height:
lines.append(f" Dimensions: {width}x{height}")
elif search_type == "videos":
title = result.get("title", "").strip()
description = result.get("description", "").strip()
duration = result.get("duration", "").strip()
published = result.get("published", "").strip()
uploader = result.get("uploader", "").strip()
embed_url = result.get("embed_url", "").strip()
lines.append(f"{index}. {title}")
if embed_url:
lines.append(f" Video: {embed_url}")
if uploader:
lines.append(f" Uploader: {uploader}")
if duration:
lines.append(f" Duration: {duration}")
if published:
lines.append(f" Published: {published}")
if description:
lines.append(f" Description: {description}")
elif search_type == "books":
title = result.get("title", "").strip()
url = result.get("url", "").strip()
body = result.get("body", "").strip()
lines.append(f"{index}. {title}")
lines.append(f" URL: {url}")
if body:
lines.append(f" Description: {body}")
return lines
def Search_DuckDuckGo( # <-- MCP tool #2 (DDG Search)
query: Annotated[str, "The search query (supports operators like site:, quotes, OR)."],
max_results: Annotated[int, "Number of results to return (1–20)."] = 5,
page: Annotated[int, "Page number for pagination (1-based, each page contains max_results items)."] = 1,
search_type: Annotated[str, "Type of search: 'text' (web pages), 'news', 'images', 'videos', or 'books'."] = "text",
) -> str:
"""
Run a DuckDuckGo search and return formatted results with support for multiple content types.
Args:
query (str): The search query string. Supports operators like site:, quotes for exact matching,
OR for alternatives, and other DuckDuckGo search syntax.
Examples:
- Basic search: "Python programming"
- Site search: "site:example.com"
- Exact phrase: "artificial intelligence"
- Exclude terms: "cats -dogs"
max_results (int): Number of results to return per page (1–20). Default: 5.
page (int): Page number for pagination (1-based). Default: 1.
search_type (str): Type of search to perform:
- "text": Web pages (default)
- "news": News articles with dates and sources
- "images": Image results with dimensions and sources
- "videos": Video results with duration and upload info
- "books": Book search results
Returns:
str: Search results formatted appropriately for the search type, with pagination info.
"""
_log_call_start("Search_DuckDuckGo", query=query, max_results=max_results, page=page, search_type=search_type)
if not query or not query.strip():
result = "No search query provided. Please enter a search term."
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
# Validate parameters
max_results = max(1, min(20, max_results))
page = max(1, page)
valid_types = ["text", "news", "images", "videos", "books"]
if search_type not in valid_types:
search_type = "text"
# Calculate offset for pagination
offset = (page - 1) * max_results
total_needed = offset + max_results
try:
# Apply rate limiting to avoid being blocked
_search_rate_limiter.acquire()
# Perform search with timeout handling based on search type
with DDGS() as ddgs:
if search_type == "text":
raw_gen = ddgs.text(query, max_results=total_needed + 10)
elif search_type == "news":
raw_gen = ddgs.news(query, max_results=total_needed + 10)
elif search_type == "images":
raw_gen = ddgs.images(query, max_results=total_needed + 10)
elif search_type == "videos":
raw_gen = ddgs.videos(query, max_results=total_needed + 10)
elif search_type == "books":
raw_gen = ddgs.books(query, max_results=total_needed + 10)
raw = list(raw_gen)
except Exception as e:
error_msg = f"Search failed: {str(e)[:200]}"
if "blocked" in str(e).lower() or "rate" in str(e).lower():
error_msg = "Search temporarily blocked due to rate limiting. Please try again in a few minutes."
elif "timeout" in str(e).lower():
error_msg = "Search timed out. Please try again with a simpler query."
elif "network" in str(e).lower() or "connection" in str(e).lower():
error_msg = "Network connection error. Please check your internet connection and try again."
result = f"Error: {error_msg}"
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
if not raw:
result = f"No {search_type} results found for query: {query}"
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
# Apply pagination by slicing the results
paginated_results = raw[offset:offset + max_results]
if not paginated_results:
result = f"No {search_type} results found on page {page} for query: {query}. Try page 1 or reduce page number."
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
# Format results based on search type
total_available = len(raw)
start_num = offset + 1
end_num = offset + len(paginated_results)
lines = [f"{search_type.title()} search results for: {query}"]
lines.append(f"Page {page} (results {start_num}-{end_num} of ~{total_available}+ available)\n")
for i, result in enumerate(paginated_results, start_num):
result_lines = _format_search_result(result, search_type, i)
lines.extend(result_lines)
lines.append("") # Empty line between results
# Add pagination hint
if total_available > end_num:
lines.append(f"💡 More results available - use page={page + 1} to see next {max_results} results")
result = "\n".join(lines)
_log_call_end("Search_DuckDuckGo", f"type={search_type} page={page} results={len(paginated_results)} chars={len(result)}")
return result
# ======================================
# Code Execution: Python (MCP tool #3)
# ======================================
import tempfile
import base64
from pathlib import Path
def _detect_created_files(working_dir: str, before_files: set) -> list[str]:
"""
Detect files created during code execution.
Returns list of newly created file paths.
"""
try:
current_files = set()
for file_path in Path(working_dir).rglob("*"):
if file_path.is_file():
current_files.add(str(file_path))
new_files = current_files - before_files
return list(new_files)
except Exception:
return []
def _generate_file_url(file_path: str) -> dict:
"""
Generate a data URL for small files or file info for larger files.
Returns dict with file info and download URL.
"""
try:
path = Path(file_path)
file_size = path.stat().st_size
# For files under 1MB, create data URL
if file_size < 1024 * 1024: # 1MB limit
with open(file_path, 'rb') as f:
file_data = f.read()
# Determine MIME type based on extension
mime_types = {
'.csv': 'text/csv',
'.txt': 'text/plain',
'.json': 'application/json',
'.png': 'image/png',
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.gif': 'image/gif',
'.pdf': 'application/pdf',
'.html': 'text/html',
'.xml': 'text/xml',
'.svg': 'image/svg+xml'
}
mime_type = mime_types.get(path.suffix.lower(), 'application/octet-stream')
encoded_data = base64.b64encode(file_data).decode('utf-8')
data_url = f"data:{mime_type};base64,{encoded_data}"
return {
'name': path.name,
'size': file_size,
'type': mime_type,
'url': data_url,
'downloadable': True
}
else:
# For larger files, just return file info
return {
'name': path.name,
'size': file_size,
'type': 'file',
'url': None,
'downloadable': False,
'note': f'File too large ({file_size} bytes) for data URL'
}
except Exception as e:
return {
'name': Path(file_path).name,
'error': str(e),
'downloadable': False
}
def Execute_Python(code: Annotated[str, "Python source code to run; stdout is captured and returned."]) -> str:
"""
Execute arbitrary Python code and return captured stdout plus any created files.
Supports creating downloadable artifacts like CSV files, images, etc. Files created
during execution will be detected and made available as data URLs for download.
Args:
code (str): Python source code to run; stdout is captured and returned.
Returns:
str: Combined stdout produced by the code, plus information about any files
created during execution with download links for small files.
"""
_log_call_start("Execute_Python", code=_truncate_for_log(code or "", 300))
if code is None:
result = "No code provided."
_log_call_end("Execute_Python", result)
return result
# Create a temporary working directory
with tempfile.TemporaryDirectory() as temp_dir:
# Change to temp directory and capture existing files
original_cwd = os.getcwd()
os.chdir(temp_dir)
try:
# Get initial file list
before_files = set()
for file_path in Path(temp_dir).rglob("*"):
if file_path.is_file():
before_files.add(str(file_path))
# Execute code with stdout capture
old_stdout = sys.stdout
redirected_output = sys.stdout = StringIO()
try:
exec(code)
stdout_result = redirected_output.getvalue()
except Exception as e:
stdout_result = f"Error: {str(e)}"
finally:
sys.stdout = old_stdout
# Detect any files created during execution
created_files = _detect_created_files(temp_dir, before_files)
# Build result with stdout and file information
result_parts = []
if stdout_result.strip():
result_parts.append("=== Output ===")
result_parts.append(stdout_result.strip())
if created_files:
result_parts.append("\n=== Created Files ===")
for file_path in created_files:
file_info = _generate_file_url(file_path)
if file_info.get('downloadable', False):
result_parts.append(f"📁 {file_info['name']} ({file_info['size']} bytes)")
result_parts.append(f" Type: {file_info['type']}")
result_parts.append(f" Download: {file_info['url']}")
elif file_info.get('error'):
result_parts.append(f"❌ {file_info['name']} (error: {file_info['error']})")
else:
result_parts.append(f"📄 {file_info['name']} ({file_info.get('size', 'unknown')} bytes)")
if 'note' in file_info:
result_parts.append(f" Note: {file_info['note']}")
result = "\n".join(result_parts) if result_parts else "No output or files generated."
finally:
# Restore original working directory
os.chdir(original_cwd)
_log_call_end("Execute_Python", _truncate_for_log(result))
return result
# ==========================
# Kokoro TTS (MCP tool #4)
# ==========================
_KOKORO_STATE = {
"initialized": False,
"device": "cpu",
"model": None,
"pipelines": {},
}
def get_kokoro_voices():
"""Get comprehensive list of available Kokoro voice IDs (54 total)."""
try:
from huggingface_hub import list_repo_files
# Get voice files from the Kokoro repository
files = list_repo_files('hexgrad/Kokoro-82M')
voice_files = [f for f in files if f.endswith('.pt') and f.startswith('voices/')]
voices = [f.replace('voices/', '').replace('.pt', '') for f in voice_files]
return sorted(voices) if voices else _get_fallback_voices()
except Exception:
return _get_fallback_voices()
def _get_fallback_voices():
"""Return comprehensive fallback list of known Kokoro voices (54 total)."""
return [
# American Female (11 voices)
"af_alloy", "af_aoede", "af_bella", "af_heart", "af_jessica",
"af_kore", "af_nicole", "af_nova", "af_river", "af_sarah", "af_sky",
# American Male (9 voices)
"am_adam", "am_echo", "am_eric", "am_fenrir", "am_liam",
"am_michael", "am_onyx", "am_puck", "am_santa",
# British Female (4 voices)
"bf_alice", "bf_emma", "bf_isabella", "bf_lily",
# British Male (4 voices)
"bm_daniel", "bm_fable", "bm_george", "bm_lewis",
# European Female/Male (3 voices)
"ef_dora", "em_alex", "em_santa",
# French Female (1 voice)
"ff_siwis",
# Hindi Female/Male (4 voices)
"hf_alpha", "hf_beta", "hm_omega", "hm_psi",
# Italian Female/Male (2 voices)
"if_sara", "im_nicola",
# Japanese Female/Male (5 voices)
"jf_alpha", "jf_gongitsune", "jf_nezumi", "jf_tebukuro", "jm_kumo",
# Portuguese Female/Male (3 voices)
"pf_dora", "pm_alex", "pm_santa",
# Chinese Female/Male (8 voices)
"zf_xiaobei", "zf_xiaoni", "zf_xiaoxiao", "zf_xiaoyi",
"zm_yunjian", "zm_yunxi", "zm_yunxia", "zm_yunyang"
]
def _init_kokoro() -> None:
"""Lazy-initialize Kokoro model and pipelines on first use.
Tries CUDA if torch is present and available; falls back to CPU. Keeps a
minimal English pipeline and custom lexicon tweak for the word "kokoro".
"""
if _KOKORO_STATE["initialized"]:
return
if KModel is None or KPipeline is None:
raise RuntimeError(
"Kokoro is not installed. Please install the 'kokoro' package (>=0.9.4)."
)
device = "cpu"
if torch is not None:
try:
if torch.cuda.is_available(): # type: ignore[attr-defined]
device = "cuda"
except Exception:
device = "cpu"
model = KModel().to(device).eval()
pipelines = {"a": KPipeline(lang_code="a", model=False)}
# Custom pronunciation
try:
pipelines["a"].g2p.lexicon.golds["kokoro"] = "kˈOkəɹO"
except Exception:
pass
_KOKORO_STATE.update(
{
"initialized": True,
"device": device,
"model": model,
"pipelines": pipelines,
}
)
def List_Kokoro_Voices() -> List[str]:
"""
Get a list of all available Kokoro voice identifiers.
This MCP tool helps clients discover the 54 available voice options
for the Generate_Speech tool.
Returns:
List[str]: A list of voice identifiers (e.g., ["af_heart", "am_adam", "bf_alice", ...])
Voice naming convention:
- First 2 letters: Language/Region (af=American Female, am=American Male, bf=British Female, etc.)
- Following letters: Voice name (heart, adam, alice, etc.)
Available categories:
- American Female/Male (20 voices)
- British Female/Male (8 voices)
- European Female/Male (3 voices)
- French Female (1 voice)
- Hindi Female/Male (4 voices)
- Italian Female/Male (2 voices)
- Japanese Female/Male (5 voices)
- Portuguese Female/Male (3 voices)
- Chinese Female/Male (8 voices)
"""
return get_kokoro_voices()
def Generate_Speech( # <-- MCP tool #4 (Generate Speech)
text: Annotated[str, "The text to synthesize (English)."],
speed: Annotated[float, "Speech speed multiplier in 0.5–2.0; 1.0 = normal speed."] = 1.25,
voice: Annotated[str, "Voice identifier from 54 available options."] = "af_heart",
) -> Tuple[int, np.ndarray]:
"""
Synthesize speech from text using the Kokoro-82M TTS model.
This function returns raw audio suitable for a Gradio Audio component and is
also exposed as an MCP tool. It supports 54 different voices across multiple
languages and accents including American, British, European, Hindi, Italian,
Japanese, Portuguese, and Chinese speakers.
Args:
text (str): The text to synthesize. Works best with English but supports multiple languages.
speed (float): Speech speed multiplier in 0.5–2.0; 1.0 = normal speed. Default: 1.25 (slightly brisk).
voice (str): Voice identifier from 54 available options. Default: 'af_heart'.
Returns:
A tuple of (sample_rate_hz, audio_waveform) where:
- sample_rate_hz: int sample rate in Hz (24_000)
- audio_waveform: numpy.ndarray float32 mono waveform in range [-1, 1]
"""
_log_call_start("Generate_Speech", text=_truncate_for_log(text, 200), speed=speed, voice=voice)
if not text or not text.strip():
try:
_log_call_end("Generate_Speech", "error=empty text")
finally:
pass
raise gr.Error("Please provide non-empty text to synthesize.")
_init_kokoro()
model = _KOKORO_STATE["model"]
pipelines = _KOKORO_STATE["pipelines"]
pipeline = pipelines.get("a")
if pipeline is None:
raise gr.Error("Kokoro English pipeline not initialized.")
# Process ALL segments for longer audio generation
audio_segments = []
pack = pipeline.load_voice(voice)
try:
# Get all segments first to show progress for long text
segments = list(pipeline(text, voice, speed))
total_segments = len(segments)
# Iterate through ALL segments instead of just the first one
for segment_idx, (text_chunk, ps, _) in enumerate(segments):
ref_s = pack[len(ps) - 1]
try:
audio = model(ps, ref_s, float(speed))
audio_segments.append(audio.detach().cpu().numpy())
# For very long text (>10 segments), show progress every few segments
if total_segments > 10 and (segment_idx + 1) % 5 == 0:
print(f"Progress: Generated {segment_idx + 1}/{total_segments} segments...")
except Exception as e:
raise gr.Error(f"Error generating audio for segment {segment_idx + 1}: {str(e)}")
if not audio_segments:
raise gr.Error("No audio was generated (empty synthesis result).")
# Concatenate all segments to create the complete audio
if len(audio_segments) == 1:
final_audio = audio_segments[0]
else:
final_audio = np.concatenate(audio_segments, axis=0)
# For multi-segment audio, provide completion info
duration = len(final_audio) / 24_000
if total_segments > 1:
print(f"Completed: {total_segments} segments concatenated into {duration:.1f} seconds of audio")
# Success logging & return
_log_call_end("Generate_Speech", f"samples={final_audio.shape[0]} duration_sec={len(final_audio)/24_000:.2f}")
return 24_000, final_audio
except gr.Error as e:
_log_call_end("Generate_Speech", f"gr_error={str(e)}")
raise # Re-raise
except Exception as e:
_log_call_end("Generate_Speech", f"error={str(e)[:120]}")
raise gr.Error(f"Error during speech generation: {str(e)}")
# ==========================
# JSON Memory System (MCP tools #7–#10 if enabled)
# ==========================
# Implementation goals (aligned with Gradio MCP docs):
# * Each function has a rich docstring (used for tool description)
# * Type hints + Annotated param docs become the schema
# * Zero external dependencies (pure stdlib JSON file persistence)
# * Safe concurrent access via a process‑local lock
# * Human‑readable & recoverable even if file becomes corrupted
MEMORY_FILE = os.path.join(os.path.dirname(__file__), "memories.json")
_MEMORY_LOCK = threading.RLock()
_MAX_MEMORIES = 10_000 # soft cap to avoid unbounded growth
def _now_iso() -> str:
return datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
def _load_memories() -> List[Dict[str, str]]:
"""Internal helper: load memory list from disk.
Returns an empty list if the file does not exist or is unreadable.
If the JSON is corrupted, a *.corrupt backup is written once and a
fresh empty list is returned (fail‑open philosophy for tool usage).
"""
if not os.path.exists(MEMORY_FILE):
return []
try:
with open(MEMORY_FILE, "r", encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, list):
# Filter only dict items containing required keys if present
cleaned: List[Dict[str, str]] = []
for item in data:
if isinstance(item, dict) and "id" in item and "text" in item:
cleaned.append(item)
return cleaned
return []
except Exception:
# Backup corrupted file once
try:
backup = MEMORY_FILE + ".corrupt"
if not os.path.exists(backup):
os.replace(MEMORY_FILE, backup)
except Exception:
pass
return []
def _save_memories(memories: List[Dict[str, str]]) -> None:
"""Persist memory list atomically to disk (write temp then replace)."""
tmp_path = MEMORY_FILE + ".tmp"
with open(tmp_path, "w", encoding="utf-8") as f:
json.dump(memories, f, ensure_ascii=False, indent=2)
os.replace(tmp_path, MEMORY_FILE)
def _mem_save(
text: Annotated[str, "Raw textual content to remember (will be stored verbatim)."],
tags: Annotated[str, "Optional comma-separated tags for lightweight categorization (e.g. 'user, preference')."] = "",
) -> str:
"""(Internal) Persist a new memory record.
Summary:
Adds a memory object to the local JSON store (no external database).
Stored Fields:
- id (str, UUID4)
- text (str, verbatim user content)
- timestamp (UTC "YYYY-MM-DD HH:MM:SS")
- tags (str, original comma-separated tag string)
Behavior / Rules:
1. Whitespace is trimmed; empty text is rejected.
2. If the most recent existing memory has identical text, the new one is skipped (light dedupe heuristic).
3. When total entries exceed _MAX_MEMORIES, oldest entries are pruned (soft cap).
4. Operation is protected by an in‑process reentrant lock only (no cross‑process locking).
Returns:
str: Human readable confirmation containing the new memory UUID (full or prefix
Security / Privacy:
Data is plaintext JSON on local disk; do NOT store secrets or regulated data.
"""
text_clean = (text or "").strip()
if not text_clean:
return "Error: memory text is empty."
with _MEMORY_LOCK:
memories = _load_memories()
if memories and memories[-1].get("text") == text_clean:
return "Skipped: identical to last stored memory."
mem_id = str(uuid.uuid4())
entry = {
"id": mem_id,
"text": text_clean,
"timestamp": _now_iso(),
"tags": tags.strip(),
}
memories.append(entry)
if len(memories) > _MAX_MEMORIES:
# Drop oldest overflow
overflow = len(memories) - _MAX_MEMORIES
memories = memories[overflow:]
_save_memories(memories)
return f"Memory saved: {mem_id}"
def _mem_list(
limit: Annotated[int, "Maximum number of most recent memories to return (1–200)."] = 20,
include_tags: Annotated[bool, "If true, include tags column in output."] = True,
) -> str:
"""(Internal) List most recent memories.
Parameters:
limit (int): Max rows to return; clamped to [1, 200].
include_tags (bool): Include tags section when True.
Output Format (one per line):
<uuid_prefix> [YYYY-MM-DD HH:MM:SS] <text> | tags: <tag list>
(Tag column omitted if empty or include_tags=False.)
Returns:
str: Joined newline string or a friendly "No memories stored." message.
"""
limit = max(1, min(200, limit))
with _MEMORY_LOCK:
memories = _load_memories()
if not memories:
return "No memories stored yet."
# Already chronological (append order); display newest first
chosen = memories[-limit:][::-1]
lines: List[str] = []
for m in chosen:
base = f"{m['id'][:8]} [{m.get('timestamp','?')}] {m.get('text','')}"
if include_tags and m.get("tags"):
base += f" | tags: {m['tags']}"
lines.append(base)
omitted = len(memories) - len(chosen)
if omitted > 0:
lines.append(f"… ({omitted} older memorie{'s' if omitted!=1 else ''} omitted; total={len(memories)})")
return "\n".join(lines)
def _mem_search(
query: Annotated[str, "Case-insensitive substring search; space-separated terms are ANDed."],
limit: Annotated[int, "Maximum number of matches (1–200)."] = 20,
) -> str:
"""(Internal) Full-text style AND search across text and tags.
Search Semantics:
- Split query on whitespace into individual terms.
- A memory matches only if EVERY term appears (case-insensitive) in the text OR tags field.
- Results are ordered newest-first (descending timestamp).
Parameters:
query (str): Raw user query string; must contain at least one non-space character.
limit (int): Max rows to return; clamped to [1, 200].
Returns:
str: Formatted lines identical to _mem_list output or "No matches".
"""
q = (query or "").strip()
if not q:
return "Error: empty query."
terms = [t.lower() for t in q.split() if t.strip()]
if not terms:
return "Error: no valid search terms."
limit = max(1, min(200, limit))
with _MEMORY_LOCK:
memories = _load_memories()
# Newest first iteration for early cutoff
matches: List[Dict[str, str]] = [] # collected (capped at limit)
total_matches = 0
for m in reversed(memories): # newest backward
hay = (m.get("text", "") + " " + m.get("tags", "")).lower()
if all(t in hay for t in terms):
total_matches += 1
if len(matches) < limit:
matches.append(m)
if not matches:
return f"No matches for: {query}"
lines = [
f"{m['id'][:8]} [{m.get('timestamp','?')}] {m.get('text','')}" + (f" | tags: {m['tags']}" if m.get('tags') else "")
for m in matches
]
omitted = total_matches - len(matches)
if omitted > 0:
lines.append(f"… ({omitted} additional match{'es' if omitted!=1 else ''} omitted; total_matches={total_matches})")
return "\n".join(lines)
def _mem_delete(
memory_id: Annotated[str, "Full UUID or a unique prefix (>=4 chars) of the memory id to delete."],
) -> str:
"""(Internal) Delete one memory by UUID or unique prefix.
Parameters:
memory_id (str): Full UUID4 (preferred) OR a unique prefix (>=4 chars). If prefix is ambiguous, no deletion occurs.
Returns:
str: One of: success message, ambiguity notice, or not-found message.
Safety:
Ambiguous prefixes are rejected to prevent accidental mass deletion.
"""
key = (memory_id or "").strip().lower()
if len(key) < 4:
return "Error: supply at least 4 characters of the id."
with _MEMORY_LOCK:
memories = _load_memories()
matched = [m for m in memories if m["id"].lower().startswith(key)]
if not matched:
return "Memory not found."
if len(matched) > 1 and key != matched[0]["id"].lower():
# ambiguous prefix
sample = ", ".join(m["id"][:8] for m in matched[:5])
more = "…" if len(matched) > 5 else ""
return f"Ambiguous prefix (matches {len(matched)} ids: {sample}{more}). Provide more characters."
# Unique match
target_id = matched[0]["id"]
memories = [m for m in memories if m["id"] != target_id]
_save_memories(memories)
return f"Deleted memory: {target_id}"
# ======================
# UI: four-tab interface
# ======================
# --- Fetch tab (compact controllable extraction) ---
fetch_interface = gr.Interface(
fn=Fetch_Webpage,
inputs=[
gr.Textbox(label="URL", placeholder="https://example.com/article"),
gr.Slider(
minimum=0,
maximum=20000,
value=3000,
step=100,
label="Max Characters",
info="0 = no limit (full page), default 3000"
),
gr.Textbox(
label="Strip Selectors",
placeholder=".header, .footer, nav, .sidebar",
value="",
info="CSS selectors to remove (comma-separated)"
),
gr.Checkbox(
label="URL Scraper",
value=False,
info="Extract only links instead of content"
),
],
outputs=gr.Markdown(label="Extracted Content"),
title="Fetch Webpage",
description=(
"<div style=\"text-align:center\">Convert any webpage to clean Markdown format with precision controls, or extract all links. Supports custom element removal and length limits.</div>"
),
api_description=(
"Fetch a web page and return it converted to Markdown format or extract links with configurable options. "
"Parameters: url (str - absolute URL), max_chars (int - 0=no limit, default 3000), "
"strip_selectors (str - CSS selectors to remove, comma-separated), "
"url_scraper (bool - extract only links instead of content, default False). "
"When url_scraper=True, returns formatted list of all links found on the page. "
"When False, returns clean Markdown content with custom element removal and length control."
),
flagging_mode="never",
)
# --- Simplified DDG tab (readable output only) ---
concise_interface = gr.Interface(
fn=Search_DuckDuckGo,
inputs=[
gr.Textbox(label="Query", placeholder="topic OR site:example.com"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Page", info="Page number for pagination"),
gr.Radio(
label="Search Type",
choices=["text", "news", "images", "videos", "books"],
value="text",
info="Type of content to search for"
),
],
outputs=gr.Textbox(label="Search Results", interactive=False),
title="DuckDuckGo Search",
description=(
"<div style=\"text-align:center\">Multi-type web search with readable output format, date detection, and pagination. Supports text, news, images, videos, and books.</div>"
),
api_description=(
"Run a DuckDuckGo search with support for multiple content types and return formatted results. "
"Supports advanced search operators: site: for specific domains, quotes for exact phrases, "
"OR for alternatives, and - to exclude terms. Examples: 'Python programming', 'site:example.com', "
"'\"artificial intelligence\"', 'cats -dogs', 'Python OR JavaScript'. "
"Parameters: query (str), max_results (int, 1-20), page (int, 1-based pagination), "
"search_type (str: text/news/images/videos/books). "
"Returns appropriately formatted results with metadata and pagination hints for each content type."
),
flagging_mode="never",
submit_btn="Search",
)
##
# --- Execute Python tab (simple code interpreter) ---
code_interface = gr.Interface(
fn=Execute_Python,
inputs=gr.Code(label="Python Code", language="python"),
outputs=gr.Textbox(label="Output"),
title="Python Code Executor",
description=(
"<div style=\"text-align:center\">Execute Python code and create downloadable files. Supports CSV exports, image generation, and more.</div>"
),
api_description=(
"Execute arbitrary Python code and return captured stdout plus any created files with download URLs. "
"Supports any valid Python code including imports, variables, functions, loops, and calculations. "
"Files created during execution (CSV, PNG, TXT, etc.) are automatically detected and made available as data URLs for download. "
"Examples: 'print(2+2)', 'import pandas as pd; df.to_csv(\"data.csv\")', 'import matplotlib.pyplot as plt; plt.savefig(\"plot.png\")'. "
"Parameters: code (str - Python source code to execute). "
"Returns: Combined stdout output and file information with download links for created artifacts."
),
flagging_mode="never",
)
CSS_STYLES = """
/* Style only the top-level app title to avoid affecting headings elsewhere */
.app-title {
text-align: center;
/* Ensure main title appears first, then our two subtitle lines */
display: grid;
justify-items: center;
}
/* Place bold tools list on line 2, normal auth note on line 3 (below title) */
.app-title::before {
grid-row: 2;
content: "Fetch Webpage | Search DuckDuckGo | Python Interpreter | Memory Manager | Kokoro TTS | Image Generation | Video Generation";
display: block;
font-size: 1rem;
font-weight: 700;
opacity: 0.9;
margin-top: 6px;
white-space: pre-wrap;
}
.app-title::after {
grid-row: 3;
content: "General purpose tools useful for any agent.";
display: block;
font-size: 1rem;
font-weight: 400;
opacity: 0.9;
margin-top: 2px;
white-space: pre-wrap;
}
/* Historical safeguard: if any h1 appears inside tabs, don't attach pseudo content */
.gradio-container [role=\"tabpanel\"] h1::before,
.gradio-container [role=\"tabpanel\"] h1::after {
content: none !important;
}
/* Information accordion - modern info cards */
.info-accordion {
margin: 8px 0 2px;
}
.info-grid {
display: grid;
gap: 12px;
/* Force a 2x2 layout on medium+ screens */
grid-template-columns: repeat(2, minmax(0, 1fr));
align-items: stretch;
}
/* On narrow screens, stack into a single column */
@media (max-width: 800px) {
.info-grid {
grid-template-columns: 1fr;
}
}
.info-card {
display: flex;
gap: 14px;
padding: 14px 16px;
border: 1px solid rgba(255, 255, 255, 0.08);
background: linear-gradient(180deg, rgba(255,255,255,0.05), rgba(255,255,255,0.03));
border-radius: 12px;
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.04);
position: relative;
overflow: hidden;
backdrop-filter: blur(2px);
}
.info-card::before {
content: "";
position: absolute;
inset: 0;
border-radius: 12px;
pointer-events: none;
background: linear-gradient(90deg, rgba(99,102,241,0.06), rgba(59,130,246,0.05));
}
.info-card__icon {
font-size: 24px;
flex: 0 0 28px;
line-height: 1;
filter: saturate(1.1);
}
.info-card__body {
min-width: 0;
}
.info-card__body h3 {
margin: 0 0 6px;
font-size: 1.05rem;
}
.info-card__body p {
margin: 6px 0;
opacity: 0.95;
}
/* Readable code blocks inside info cards */
.info-card pre {
margin: 8px 0;
padding: 10px 12px;
background: rgba(20, 20, 30, 0.55);
border: 1px solid rgba(255, 255, 255, 0.08);
border-radius: 10px;
overflow-x: auto;
white-space: pre;
}
.info-card code {
font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", monospace;
font-size: 0.95em;
}
.info-card pre code {
display: block;
}
.info-list {
margin: 6px 0 0 18px;
padding: 0;
}
.info-hint {
margin-top: 8px;
font-size: 0.9em;
opacity: 0.9;
}
/* Light theme adjustments */
@media (prefers-color-scheme: light) {
.info-card {
border-color: rgba(0, 0, 0, 0.08);
background: linear-gradient(180deg, rgba(255,255,255,0.95), rgba(255,255,255,0.9));
}
.info-card::before {
background: linear-gradient(90deg, rgba(99,102,241,0.08), rgba(59,130,246,0.06));
}
.info-card pre {
background: rgba(245, 246, 250, 0.95);
border-color: rgba(0, 0, 0, 0.08);
}
}
/* Tabs - modern, evenly distributed full-width buttons */
.gradio-container [role="tablist"] {
display: flex;
gap: 8px;
flex-wrap: nowrap;
align-items: stretch;
width: 100%;
}
.gradio-container [role="tab"] {
flex: 1 1 0;
min-width: 0; /* allow shrinking to fit */
display: inline-flex;
justify-content: center;
align-items: center;
padding: 10px 12px;
border-radius: 10px;
border: 1px solid rgba(255, 255, 255, 0.08);
background: linear-gradient(180deg, rgba(255,255,255,0.05), rgba(255,255,255,0.03));
transition: background .2s ease, border-color .2s ease, box-shadow .2s ease, transform .06s ease;
overflow: hidden;
white-space: nowrap;
text-overflow: ellipsis;
}
.gradio-container [role="tab"]:hover {
border-color: rgba(99,102,241,0.28);
background: linear-gradient(180deg, rgba(99,102,241,0.10), rgba(59,130,246,0.08));
}
.gradio-container [role="tab"][aria-selected="true"] {
border-color: rgba(99,102,241,0.35);
box-shadow: inset 0 0 0 1px rgba(99,102,241,0.25), 0 1px 2px rgba(0,0,0,0.25);
background: linear-gradient(180deg, rgba(99,102,241,0.18), rgba(59,130,246,0.14));
color: rgba(255, 255, 255, 0.95) !important;
}
.gradio-container [role="tab"]:active {
transform: translateY(0.5px);
}
.gradio-container [role="tab"]:focus-visible {
outline: none;
box-shadow: 0 0 0 2px rgba(59,130,246,0.35);
}
@media (prefers-color-scheme: light) {
.gradio-container [role="tab"] {
border-color: rgba(0, 0, 0, 0.08);
background: linear-gradient(180deg, rgba(255,255,255,0.95), rgba(255,255,255,0.90));
}
.gradio-container [role="tab"]:hover {
border-color: rgba(99,102,241,0.25);
background: linear-gradient(180deg, rgba(99,102,241,0.08), rgba(59,130,246,0.06));
}
.gradio-container [role="tab"][aria-selected="true"] {
border-color: rgba(99,102,241,0.35);
background: linear-gradient(180deg, rgba(99,102,241,0.16), rgba(59,130,246,0.12));
color: rgba(0, 0, 0, 0.85) !important;
}
}
"""
# --- Kokoro TTS tab (text to speech) ---
available_voices = get_kokoro_voices()
kokoro_interface = gr.Interface(
fn=Generate_Speech,
inputs=[
gr.Textbox(label="Text", placeholder="Type text to synthesize…", lines=4),
gr.Slider(minimum=0.5, maximum=2.0, value=1.25, step=0.1, label="Speed"),
gr.Dropdown(
label="Voice",
choices=available_voices,
value="af_heart",
info="Select from 54 available voices across multiple languages and accents"
),
],
outputs=gr.Audio(label="Audio", type="numpy", format="wav", show_download_button=True),
title="Kokoro TTS",
description=(
"<div style=\"text-align:center\">Generate speech with Kokoro-82M. Supports multiple languages and accents. Runs on CPU or CUDA if available.</div>"
),
api_description=(
"Synthesize speech from text using Kokoro-82M TTS model. Returns (sample_rate, waveform) suitable for playback. "
"Supports unlimited text length by processing all segments. Voice examples: 'af_heart' (US female), 'am_onyx' (US male), "
"'bf_emma' (British female), 'af_sky' (US female), 'af_nicole' (US female), "
"Parameters: text (str), speed (float 0.5–2.0, default 1.25x), voice (str from 54 available options, default 'af_heart'). "
"Return the generated media to the user in this format `![Alt text](URL)`"
),
flagging_mode="never",
)
def Memory_Manager(
action: Annotated[Literal["save","list","search","delete"], "Action to perform: save | list | search | delete"],
text: Annotated[Optional[str], "Text content (Save only)"] = None,
tags: Annotated[Optional[str], "Comma-separated tags (Save only)"] = None,
query: Annotated[Optional[str], "Search query terms (Search only)"] = None,
limit: Annotated[int, "Max results (List/Search only)"] = 20,
memory_id: Annotated[Optional[str], "Full UUID or unique prefix (Delete only)"] = None,
include_tags: Annotated[bool, "Include tags (List/Search only)"] = True,
) -> str:
"""Manage lightweight local JSON “memories” (save | list | search | delete) in one MCP tool.
Overview:
This tool provides simple, local, append‑only style persistence for short text memories
with optional tags. Data is stored in a plaintext JSON file ("memories.json") beside the
application; no external database or network access is required.
Supported Actions:
- save : Store a new memory (requires 'text'; optional 'tags').
- list : Return the most recent memories (respects 'limit' + 'include_tags').
- search : AND match space‑separated terms across text and tags (uses 'query', 'limit').
- delete : Remove one memory by full UUID or unique prefix (uses 'memory_id').
Parameter Usage by Action:
action=save -> text (required), tags (optional)
action=list -> limit, include_tags
action=search -> query (required), limit, include_tags
action=delete -> memory_id (required)
Parameters:
action (Literal[save|list|search|delete]): Operation selector (case-insensitive).
text (str): Raw memory content; leading/trailing whitespace trimmed (save only).
tags (str): Optional comma-separated tags; stored verbatim (save only).
query (str): Space-separated terms (AND logic, case-insensitive) across text+tags (search only).
limit (int): Maximum rows for list/search (clamped internally to 1–200).
memory_id (str): Full UUID or unique prefix (>=4 chars) (delete only).
include_tags (bool): When True, show tag column in list/search output.
Storage Format (per entry):
{"id": "<uuid4>", "text": "<original text>", "timestamp": "YYYY-MM-DD HH:MM:SS", "tags": "tag1, tag2"}
Lifecycle & Constraints:
- A soft cap of {_MAX_MEMORIES} entries is enforced by pruning oldest records on save.
- A light duplicate guard skips saving if the newest existing entry has identical text.
- All operations are protected by a thread‑local reentrant lock (NOT multi‑process safe).
Returns:
str: Human‑readable status / result lines (never raw JSON) suitable for direct model consumption.
Error Modes:
- Invalid action -> error string.
- Missing required field for the chosen action -> explanatory message.
- Ambiguous or unknown memory_id on delete -> clarification message.
Security & Privacy:
Plaintext JSON; do not store secrets, credentials, or regulated personal data.
"""
act = (action or "").lower().strip()
# Normalize None -> "" for internal helpers
text = text or ""
tags = tags or ""
query = query or ""
memory_id = memory_id or ""
if act == "save":
if not text.strip():
return "Error: 'text' is required when action=save."
return _mem_save(text=text, tags=tags)
if act == "list":
return _mem_list(limit=limit, include_tags=include_tags)
if act == "search":
if not query.strip():
return "Error: 'query' is required when action=search."
return _mem_search(query=query, limit=limit)
if act == "delete":
if not memory_id.strip():
return "Error: 'memory_id' is required when action=delete."
return _mem_delete(memory_id=memory_id)
return "Error: invalid action (use save|list|search|delete)."
memory_interface = gr.Interface(
fn=Memory_Manager,
inputs=[
gr.Dropdown(label="Action", choices=["save","list","search","delete"], value="list"),
gr.Textbox(label="Text", lines=3, placeholder="Memory text (save)"),
gr.Textbox(label="Tags", placeholder="tag1, tag2"),
gr.Textbox(label="Query", placeholder="Search terms (search)"),
gr.Slider(1, 200, value=20, step=1, label="Limit"),
gr.Textbox(label="Memory ID / Prefix", placeholder="UUID or prefix (delete)"),
gr.Checkbox(value=True, label="Include Tags"),
],
outputs=gr.Textbox(label="Result", lines=14),
title="Memory Manager",
description=(
"<div style=\"text-align:center\">Lightweight local JSON memory store (no external DB). Choose an Action, fill only the relevant fields, and run.</div>"
),
api_description=(
"Manage short text memories with optional tags. Actions: save(text,tags), list(limit,include_tags), "
"search(query,limit,include_tags), delete(memory_id). Returns plaintext JSON. Action parameter is always required. "
"Use Memory_Manager whenever you are given information worth remembering about the user, and search for memories when relevant."
),
flagging_mode="never",
)
# ==========================
# Image Generation (Serverless)
# ==========================
HF_API_TOKEN = os.getenv("HF_READ_TOKEN")
def Generate_Image( # <-- MCP tool #5 (Generate Image)
prompt: Annotated[str, "Text description of the image to generate."],
model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name' (e.g., black-forest-labs/FLUX.1-Krea-dev)."] = "black-forest-labs/FLUX.1-Krea-dev",
negative_prompt: Annotated[str, "What should NOT appear in the image." ] = (
"(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
"missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
"mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
),
steps: Annotated[int, "Number of denoising steps (1–100). Higher = slower, potentially higher quality."] = 35,
cfg_scale: Annotated[float, "Classifier-free guidance scale (1–20). Higher = follow the prompt more closely."] = 7.0,
sampler: Annotated[str, "Sampling method label (UI only). Common options: 'DPM++ 2M Karras', 'DPM++ SDE Karras', 'Euler', 'Euler a', 'Heun', 'DDIM'."] = "DPM++ 2M Karras",
seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
width: Annotated[int, "Output width in pixels (64–1216, multiple of 32 recommended)."] = 1024,
height: Annotated[int, "Output height in pixels (64–1216, multiple of 32 recommended)."] = 1024,
) -> Image.Image:
"""
Generate a single image from a text prompt using a Hugging Face model via serverless inference.
Args:
prompt (str): Text description of the image to generate.
model_id (str): The Hugging Face model id (creator/model-name). Defaults to "black-forest-labs/FLUX.1-Krea-dev".
negative_prompt (str): What should NOT appear in the image.
steps (int): Number of denoising steps (1–100). Higher can improve quality.
cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
sampler (str): Sampling method label for UI; not all providers expose this control.
seed (int): Random seed. Use -1 to randomize on each call.
width (int): Output width in pixels (64–1216; multiples of 32 recommended).
height (int): Output height in pixels (64–1216; multiples of 32 recommended).
Returns:
PIL.Image.Image: The generated image.
Error modes:
- Raises gr.Error with a user-friendly message on auth/model/load errors.
"""
_log_call_start("Generate_Image", prompt=_truncate_for_log(prompt, 200), model_id=model_id, steps=steps, cfg_scale=cfg_scale, seed=seed, size=f"{width}x{height}")
if not prompt or not prompt.strip():
_log_call_end("Generate_Image", "error=empty prompt")
raise gr.Error("Please provide a non-empty prompt.")
# Slightly enhance prompt for quality (kept consistent with Serverless space)
enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
# Try multiple providers for resilience
providers = ["auto", "replicate", "fal-ai"]
last_error: Exception | None = None
for provider in providers:
try:
client = InferenceClient(api_key=HF_API_TOKEN, provider=provider)
image = client.text_to_image(
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
model=model_id,
width=width,
height=height,
num_inference_steps=steps,
guidance_scale=cfg_scale,
seed=seed if seed != -1 else random.randint(1, 1_000_000_000),
)
_log_call_end("Generate_Image", f"provider={provider} size={image.size}")
return image
except Exception as e: # try next provider, transform last one to friendly error
last_error = e
continue
# If we reach here, all providers failed
msg = str(last_error) if last_error else "Unknown error"
if "404" in msg:
raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and your HF token access.")
if "503" in msg:
raise gr.Error("The model is warming up. Please try again shortly.")
if "401" in msg or "403" in msg:
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
# Map common provider auth messages to the same friendly guidance
low = msg.lower()
if ("api_key" in low) or ("hf auth login" in low) or ("unauthorized" in low) or ("forbidden" in low):
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
_log_call_end("Generate_Image", f"error={_truncate_for_log(msg, 200)}")
raise gr.Error(f"Image generation failed: {msg}")
image_generation_interface = gr.Interface(
fn=Generate_Image,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=2),
gr.Textbox(label="Model", value="black-forest-labs/FLUX.1-Krea-dev", placeholder="creator/model-name"),
gr.Textbox(
label="Negative Prompt",
value=(
"(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
"missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
"mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
),
lines=2,
),
gr.Slider(minimum=1, maximum=100, value=35, step=1, label="Steps"),
gr.Slider(minimum=1.0, maximum=20.0, value=7.0, step=0.1, label="CFG Scale"),
gr.Radio(label="Sampler", value="DPM++ 2M Karras", choices=[
"DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"
]),
gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Width"),
gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Height"),
],
outputs=gr.Image(label="Generated Image"),
title="Image Generation",
description=(
"<div style=\"text-align:center\">Generate images via Hugging Face serverless inference. "
"Default model is FLUX.1-Krea-dev.</div>"
),
api_description=(
"Generate a single image from a text prompt using a Hugging Face model via serverless inference. "
"Supports creative prompts like 'a serene mountain landscape at sunset', 'portrait of a wise owl', "
"'futuristic city with flying cars'. Default model: FLUX.1-Krea-dev. "
"Parameters: prompt (str), model_id (str, creator/model-name), negative_prompt (str), steps (int, 1–100), "
"cfg_scale (float, 1–20), sampler (str), seed (int, -1=random), width/height (int, 64–1216). "
"Returns a PIL.Image. Return the generated media to the user in this format `![Alt text](URL)`"
),
flagging_mode="never",
# Only expose to MCP when HF token is provided; UI tab is always visible
show_api=bool(os.getenv("HF_READ_TOKEN")),
)
# ==========================
# Video Generation (Serverless)
# ==========================
def _write_video_tmp(data_iter_or_bytes: object, suffix: str = ".mp4") -> str:
"""Write video bytes or iterable of bytes to a system temporary file and return its path.
This avoids polluting the project directory. The file is created in the OS temp
location; Gradio will handle serving & offering the download button.
"""
fd, fname = tempfile.mkstemp(suffix=suffix)
try:
with os.fdopen(fd, "wb") as f:
if isinstance(data_iter_or_bytes, (bytes, bytearray)):
f.write(data_iter_or_bytes) # type: ignore[arg-type]
elif hasattr(data_iter_or_bytes, "read"):
f.write(data_iter_or_bytes.read()) # type: ignore[call-arg]
elif hasattr(data_iter_or_bytes, "content"):
f.write(data_iter_or_bytes.content) # type: ignore[attr-defined]
elif hasattr(data_iter_or_bytes, "__iter__") and not isinstance(data_iter_or_bytes, (str, dict)):
for chunk in data_iter_or_bytes: # type: ignore[assignment]
if chunk:
f.write(chunk)
else:
raise gr.Error("Unsupported video data type returned by provider.")
except Exception:
# Clean up if writing failed
try:
os.remove(fname)
except Exception:
pass
raise
return fname
HF_VIDEO_TOKEN = os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")
def Generate_Video( # <-- MCP tool #6 (Generate Video)
prompt: Annotated[str, "Text description of the video to generate (e.g., 'a red fox running through a snowy forest at sunrise')."],
model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name'. Defaults to Wan-AI/Wan2.2-T2V-A14B."] = "Wan-AI/Wan2.2-T2V-A14B",
negative_prompt: Annotated[str, "What should NOT appear in the video."] = "",
steps: Annotated[int, "Number of denoising steps (1–100). Higher can improve quality but is slower."] = 25,
cfg_scale: Annotated[float, "Guidance scale (1–20). Higher = follow the prompt more closely, lower = more creative."] = 3.5,
seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
width: Annotated[int, "Output width in pixels (multiples of 8 recommended)."] = 768,
height: Annotated[int, "Output height in pixels (multiples of 8 recommended)."] = 768,
fps: Annotated[int, "Frames per second of the output video (e.g., 24)."] = 24,
duration: Annotated[float, "Target duration in seconds (provider/model dependent, commonly 2–6s)."] = 4.0,
) -> str:
"""
Generate a short video from a text prompt using a Hugging Face model via serverless inference.
Args:
prompt (str): Text description of the video to generate.
model_id (str): The Hugging Face model id (creator/model-name). Defaults to "Wan-AI/Wan2.2-T2V-A14B".
negative_prompt (str): What should NOT appear in the video.
steps (int): Number of denoising steps (1–100). Higher can improve quality but is slower.
cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
seed (int): Random seed. Use -1 to randomize on each call.
width (int): Output width in pixels.
height (int): Output height in pixels.
fps (int): Frames per second.
duration (float): Target duration in seconds.
Returns:
str: Path to an MP4 file on disk (Gradio will serve this file; MCP converts it to a file URL).
Error modes:
- Raises gr.Error with a user-friendly message on auth/model/load errors or unsupported parameters.
"""
_log_call_start("Generate_Video", prompt=_truncate_for_log(prompt, 160), model_id=model_id, steps=steps, cfg_scale=cfg_scale, fps=fps, duration=duration, size=f"{width}x{height}")
if not prompt or not prompt.strip():
_log_call_end("Generate_Video", "error=empty prompt")
raise gr.Error("Please provide a non-empty prompt.")
if not HF_VIDEO_TOKEN:
# Still attempt without a token (public models), but warn earlier if it fails.
pass
providers = ["auto", "replicate", "fal-ai"]
last_error: Exception | None = None
# Build a common parameters dict. Providers may ignore unsupported keys.
parameters = {
"negative_prompt": negative_prompt or None,
"num_inference_steps": steps,
"guidance_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1_000_000_000),
"width": width,
"height": height,
"fps": fps,
# Some providers/models expect num_frames instead of duration; we pass both-friendly value
# when supported; they may be ignored by the backend.
"duration": duration,
}
for provider in providers:
try:
client = InferenceClient(api_key=HF_VIDEO_TOKEN, provider=provider)
# Use the documented text_to_video API with correct parameters
if hasattr(client, "text_to_video"):
# Calculate num_frames from duration and fps if both provided
num_frames = int(duration * fps) if duration and fps else None
# Build extra_body for provider-specific parameters
extra_body = {}
if width:
extra_body["width"] = width
if height:
extra_body["height"] = height
if fps:
extra_body["fps"] = fps
if duration:
extra_body["duration"] = duration
result = client.text_to_video(
prompt=prompt,
model=model_id,
guidance_scale=cfg_scale,
negative_prompt=[negative_prompt] if negative_prompt else None,
num_frames=num_frames,
num_inference_steps=steps,
seed=parameters["seed"],
extra_body=extra_body if extra_body else None,
)
else:
# Generic POST fallback for older versions
result = client.post(
model=model_id,
json={
"inputs": prompt,
"parameters": {k: v for k, v in parameters.items() if v is not None},
},
)
# Save output to an .mp4
path = _write_video_tmp(result, suffix=".mp4")
try:
size = os.path.getsize(path)
except Exception:
size = -1
_log_call_end("Generate_Video", f"provider={provider} path={os.path.basename(path)} bytes={size}")
return path
except Exception as e:
last_error = e
continue
msg = str(last_error) if last_error else "Unknown error"
if "404" in msg:
raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and HF token access.")
if "503" in msg:
raise gr.Error("The model is warming up. Please try again shortly.")
if "401" in msg or "403" in msg:
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
# Map common provider auth messages to the same friendly guidance
low = msg.lower()
if ("api_key" in low) or ("hf auth login" in low) or ("unauthorized" in low) or ("forbidden" in low):
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
_log_call_end("Generate_Video", f"error={_truncate_for_log(msg, 200)}")
raise gr.Error(f"Video generation failed: {msg}")
video_generation_interface = gr.Interface(
fn=Generate_Video,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter a prompt for the video", lines=2),
gr.Textbox(label="Model", value="Wan-AI/Wan2.2-T2V-A14B", placeholder="creator/model-name"),
gr.Textbox(label="Negative Prompt", value="", lines=2),
gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Steps"),
gr.Slider(minimum=1.0, maximum=20.0, value=3.5, step=0.1, label="CFG Scale"),
gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Width"),
gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Height"),
gr.Slider(minimum=4, maximum=60, value=24, step=1, label="FPS"),
gr.Slider(minimum=1.0, maximum=10.0, value=4.0, step=0.5, label="Duration (s)"),
],
outputs=gr.Video(label="Generated Video", show_download_button=True, format="mp4"),
title="Video Generation",
description=(
"<div style=\"text-align:center\">Generate short videos via Hugging Face serverless inference. "
"Default model is Wan2.2-T2V-A14B.</div>"
),
api_description=(
"Generate a short video from a text prompt using a Hugging Face model via serverless inference. "
"Create dynamic scenes like 'a red fox running through a snowy forest at sunrise', 'waves crashing on a rocky shore', "
"'time-lapse of clouds moving across a blue sky'. Default model: Wan2.2-T2V-A14B (2-6 second videos). "
"Parameters: prompt (str), model_id (str), negative_prompt (str), steps (int), cfg_scale (float), seed (int), "
"width/height (int), fps (int), duration (float in seconds). Returns MP4 file path. "
"Return the generated media to the user in this format `![Alt text](URL)`"
),
flagging_mode="never",
# Only expose to MCP when HF token is provided; UI tab is always visible
show_api=bool(os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")),
)
_interfaces = [
fetch_interface,
concise_interface,
code_interface,
memory_interface, # Always visible in UI
kokoro_interface,
image_generation_interface, # Always visible in UI
video_generation_interface, # Always visible in UI
]
_tab_names = [
"Fetch Webpage",
"DuckDuckGo Search",
"Python Code Executor",
"Memory Manager",
"Kokoro TTS",
"Image Generation",
"Video Generation",
]
with gr.Blocks(title="Nymbo/Tools MCP", theme="Nymbo/Nymbo_Theme", css=CSS_STYLES) as demo:
# Page title (scoped styling via .app-title to avoid affecting other headings)
gr.HTML("<h1 class='app-title'>Nymbo/Tools MCP</h1>")
# Collapsed Information accordion (appears below subtitle and above tabs)
with gr.Accordion("Information", open=False):
gr.HTML(
"""
<div class="info-accordion">
<div class="info-grid">
<section class="info-card">
<div class="info-card__icon">🔐</div>
<div class="info-card__body">
<h3>Enable Image &amp; Video Generation</h3>
<p>
The <code>Generate_Image</code> and <code>Generate_Video</code> tools require a
<code>HF_READ_TOKEN</code> set as a secret or environment variable.
</p>
<ul class="info-list">
<li>Duplicate this Space and add a HF token with model read access.</li>
<li>Or run locally with <code>HF_READ_TOKEN</code> in your environment.</li>
</ul>
<div class="info-hint">
These tools are hidden as MCP tools without authentication to keep tool lists tidy, but remain visible in the UI.
</div>
</div>
</section>
<section class="info-card">
<div class="info-card__icon">🧠</div>
<div class="info-card__body">
<h3>Persistent Memories</h3>
<p>
In this public demo, memories are stored in the Space's running container and are cleared when the Space restarts.
Content is visible to everyone—avoid personal data.
</p>
<p>
When running locally, memories are saved to <code>memories.json</code> at the repo root for privacy.
</p>
</div>
</section>
<section class="info-card">
<div class="info-card__icon">🔗</div>
<div class="info-card__body">
<h3>Connecting from an MCP Client</h3>
<p>
This Space also runs as a Model Context Protocol (MCP) server. Point your client to:
<br/>
<code>https://mcp.nymbo.net/gradio_api/mcp/</code>
</p>
<p>Example client configuration:</p>
<pre><code class="language-json">{
"mcpServers": {
"nymbo-tools": {
"url": "https://mcp.nymbo.net/gradio_api/mcp/"
}
}
}</code></pre>
</div>
</section>
<section class="info-card">
<div class="info-card__icon">🛠️</div>
<div class="info-card__body">
<h3>Tool Notes &amp; Kokoro Voice Legend</h3>
<p>
No authentication required for: <code>Fetch_Webpage</code>, <code>Search_DuckDuckGo</code>,
<code>Execute_Python</code>, and <code>Generate_Speech</code>.
</p>
<p><strong>Kokoro TTS voice prefixes</strong></p>
<ul class="info-list" style="display:grid;grid-template-columns:repeat(2,minmax(160px,1fr));gap:6px 16px;">
<li><code>af</code> — American female</li>
<li><code>am</code> — American male</li>
<li><code>bf</code> — British female</li>
<li><code>bm</code> — British male</li>
<li><code>ef</code> — European female</li>
<li><code>em</code> — European male</li>
<li><code>hf</code> — Hindi female</li>
<li><code>hm</code> — Hindi male</li>
<li><code>if</code> — Italian female</li>
<li><code>im</code> — Italian male</li>
<li><code>jf</code> — Japanese female</li>
<li><code>jm</code> — Japanese male</li>
<li><code>pf</code> — Portuguese female</li>
<li><code>pm</code> — Portuguese male</li>
<li><code>zf</code> — Chinese female</li>
<li><code>zm</code> — Chinese male</li>
<li><code>ff</code> — French female</li>
</ul>
</div>
</section>
</div>
</div>
"""
)
# Existing tool tabs
gr.TabbedInterface(interface_list=_interfaces, tab_names=_tab_names)
# Launch the UI and expose all functions as MCP tools in one server
if __name__ == "__main__":
demo.launch(mcp_server=True)