|
|
from __future__ import annotations |
|
|
|
|
|
import os |
|
|
import random |
|
|
from typing import Annotated |
|
|
|
|
|
import gradio as gr |
|
|
from PIL import Image |
|
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
from app import _log_call_end, _log_call_start, _truncate_for_log |
|
|
from ._docstrings import autodoc |
|
|
|
|
|
HF_API_TOKEN = os.getenv("HF_READ_TOKEN") |
|
|
|
|
|
|
|
|
TOOL_SUMMARY = ( |
|
|
"Generate an image from a text prompt via Hugging Face serverless inference; " |
|
|
"tunable model/steps/guidance/size, supports negative prompt and seed; returns a PIL.Image. " |
|
|
"Return the generated media to the user in this format ``." |
|
|
) |
|
|
|
|
|
|
|
|
@autodoc( |
|
|
summary=TOOL_SUMMARY, |
|
|
) |
|
|
def Generate_Image( |
|
|
prompt: Annotated[str, "Text description of the image to generate."], |
|
|
model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name' (e.g., black-forest-labs/FLUX.1-Krea-dev)."] = "black-forest-labs/FLUX.1-Krea-dev", |
|
|
negative_prompt: Annotated[str, "What should NOT appear in the image."] = ( |
|
|
"(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, " |
|
|
"missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, " |
|
|
"mutated, ugly, disgusting, blurry, amputation, misspellings, typos" |
|
|
), |
|
|
steps: Annotated[int, "Number of denoising steps (1–100). Higher = slower, potentially higher quality."] = 35, |
|
|
cfg_scale: Annotated[float, "Classifier-free guidance scale (1–20). Higher = follow the prompt more closely."] = 7.0, |
|
|
sampler: Annotated[str, "Sampling method label (UI only). Common options: 'DPM++ 2M Karras', 'DPM++ SDE Karras', 'Euler', 'Euler a', 'Heun', 'DDIM'."] = "DPM++ 2M Karras", |
|
|
seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1, |
|
|
width: Annotated[int, "Output width in pixels (64–1216, multiple of 32 recommended)."] = 1024, |
|
|
height: Annotated[int, "Output height in pixels (64–1216, multiple of 32 recommended)."] = 1024, |
|
|
) -> Image.Image: |
|
|
_log_call_start( |
|
|
"Generate_Image", |
|
|
prompt=_truncate_for_log(prompt, 200), |
|
|
model_id=model_id, |
|
|
steps=steps, |
|
|
cfg_scale=cfg_scale, |
|
|
seed=seed, |
|
|
size=f"{width}x{height}", |
|
|
) |
|
|
if not prompt or not prompt.strip(): |
|
|
_log_call_end("Generate_Image", "error=empty prompt") |
|
|
raise gr.Error("Please provide a non-empty prompt.") |
|
|
enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." |
|
|
providers = ["auto", "replicate", "fal-ai"] |
|
|
last_error: Exception | None = None |
|
|
for provider in providers: |
|
|
try: |
|
|
client = InferenceClient(api_key=HF_API_TOKEN, provider=provider) |
|
|
image = client.text_to_image( |
|
|
prompt=enhanced_prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
model=model_id, |
|
|
width=width, |
|
|
height=height, |
|
|
num_inference_steps=steps, |
|
|
guidance_scale=cfg_scale, |
|
|
seed=seed if seed != -1 else random.randint(1, 1_000_000_000), |
|
|
) |
|
|
_log_call_end("Generate_Image", f"provider={provider} size={image.size}") |
|
|
return image |
|
|
except Exception as exc: |
|
|
last_error = exc |
|
|
continue |
|
|
msg = str(last_error) if last_error else "Unknown error" |
|
|
lowered = msg.lower() |
|
|
if "404" in msg: |
|
|
raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and your HF token access.") |
|
|
if "503" in msg: |
|
|
raise gr.Error("The model is warming up. Please try again shortly.") |
|
|
if "401" in msg or "403" in msg: |
|
|
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.") |
|
|
if ("api_key" in lowered) or ("hf auth login" in lowered) or ("unauthorized" in lowered) or ("forbidden" in lowered): |
|
|
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.") |
|
|
_log_call_end("Generate_Image", f"error={_truncate_for_log(msg, 200)}") |
|
|
raise gr.Error(f"Image generation failed: {msg}") |
|
|
|
|
|
|
|
|
def build_interface() -> gr.Interface: |
|
|
return gr.Interface( |
|
|
fn=Generate_Image, |
|
|
inputs=[ |
|
|
gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=2), |
|
|
gr.Textbox( |
|
|
label="Model", |
|
|
value="black-forest-labs/FLUX.1-Krea-dev", |
|
|
placeholder="creator/model-name", |
|
|
max_lines=1, |
|
|
info="<a href=\"https://huggingface.co/models?pipeline_tag=text-to-image&inference_provider=nebius,cerebras,novita,fireworks-ai,together,fal-ai,groq,featherless-ai,nscale,hyperbolic,sambanova,cohere,replicate,scaleway,publicai,hf-inference&sort=trending\" target=\"_blank\" rel=\"noopener noreferrer\">Browse models</a>", |
|
|
), |
|
|
gr.Textbox( |
|
|
label="Negative Prompt", |
|
|
value=( |
|
|
"(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, " |
|
|
"missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, " |
|
|
"mutated, ugly, disgusting, blurry, amputation, misspellings, typos" |
|
|
), |
|
|
lines=2, |
|
|
), |
|
|
gr.Slider(minimum=1, maximum=100, value=35, step=1, label="Steps"), |
|
|
gr.Slider(minimum=1.0, maximum=20.0, value=7.0, step=0.1, label="CFG Scale"), |
|
|
gr.Radio( |
|
|
label="Sampler", |
|
|
value="DPM++ 2M Karras", |
|
|
choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"], |
|
|
), |
|
|
gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"), |
|
|
gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Width"), |
|
|
gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Height"), |
|
|
], |
|
|
outputs=gr.Image(label="Generated Image"), |
|
|
title="Generate Image", |
|
|
description=( |
|
|
"<div style=\"text-align:center\">Generate images via Hugging Face serverless inference. " |
|
|
"Default model is FLUX.1-Krea-dev.</div>" |
|
|
), |
|
|
api_description=TOOL_SUMMARY, |
|
|
flagging_mode="never", |
|
|
show_api=bool(os.getenv("HF_READ_TOKEN")), |
|
|
) |
|
|
|
|
|
|
|
|
__all__ = ["Generate_Image", "build_interface"] |
|
|
|