|
|
from __future__ import annotations |
|
|
|
|
|
import os |
|
|
import random |
|
|
import tempfile |
|
|
from typing import Annotated |
|
|
|
|
|
import gradio as gr |
|
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
from app import _log_call_end, _log_call_start, _truncate_for_log |
|
|
from ._docstrings import autodoc |
|
|
|
|
|
HF_VIDEO_TOKEN = os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN") |
|
|
|
|
|
|
|
|
TOOL_SUMMARY = ( |
|
|
"Generate a short MP4 video from a text prompt via Hugging Face serverless inference; " |
|
|
"control model, steps, guidance, seed, size, fps, and duration; returns a temporary MP4 file path. " |
|
|
"Return the generated media to the user in this format ``." |
|
|
) |
|
|
|
|
|
|
|
|
def _write_video_tmp(data_iter_or_bytes: object, suffix: str = ".mp4") -> str: |
|
|
fd, fname = tempfile.mkstemp(suffix=suffix) |
|
|
try: |
|
|
with os.fdopen(fd, "wb") as file: |
|
|
if isinstance(data_iter_or_bytes, (bytes, bytearray)): |
|
|
file.write(data_iter_or_bytes) |
|
|
elif hasattr(data_iter_or_bytes, "read"): |
|
|
file.write(data_iter_or_bytes.read()) |
|
|
elif hasattr(data_iter_or_bytes, "content"): |
|
|
file.write(data_iter_or_bytes.content) |
|
|
elif hasattr(data_iter_or_bytes, "__iter__") and not isinstance(data_iter_or_bytes, (str, dict)): |
|
|
for chunk in data_iter_or_bytes: |
|
|
if chunk: |
|
|
file.write(chunk) |
|
|
else: |
|
|
raise gr.Error("Unsupported video data type returned by provider.") |
|
|
except Exception: |
|
|
try: |
|
|
os.remove(fname) |
|
|
except Exception: |
|
|
pass |
|
|
raise |
|
|
return fname |
|
|
|
|
|
|
|
|
@autodoc( |
|
|
summary=TOOL_SUMMARY, |
|
|
) |
|
|
def Generate_Video( |
|
|
prompt: Annotated[str, "Text description of the video to generate (e.g., 'a red fox running through a snowy forest at sunrise')."], |
|
|
model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name'. Defaults to akhaliq/sora-2."] = "akhaliq/sora-2", |
|
|
negative_prompt: Annotated[str, "What should NOT appear in the video."] = "", |
|
|
steps: Annotated[int, "Number of denoising steps (1–100). Higher can improve quality but is slower."] = 25, |
|
|
cfg_scale: Annotated[float, "Guidance scale (1–20). Higher = follow the prompt more closely, lower = more creative."] = 3.5, |
|
|
seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1, |
|
|
width: Annotated[int, "Output width in pixels (multiples of 8 recommended)."] = 768, |
|
|
height: Annotated[int, "Output height in pixels (multiples of 8 recommended)."] = 768, |
|
|
fps: Annotated[int, "Frames per second of the output video (e.g., 24)."] = 24, |
|
|
duration: Annotated[float, "Target duration in seconds (provider/model dependent, commonly 2–6s)."] = 4.0, |
|
|
) -> str: |
|
|
_log_call_start( |
|
|
"Generate_Video", |
|
|
prompt=_truncate_for_log(prompt, 160), |
|
|
model_id=model_id, |
|
|
steps=steps, |
|
|
cfg_scale=cfg_scale, |
|
|
fps=fps, |
|
|
duration=duration, |
|
|
size=f"{width}x{height}", |
|
|
) |
|
|
if not prompt or not prompt.strip(): |
|
|
_log_call_end("Generate_Video", "error=empty prompt") |
|
|
raise gr.Error("Please provide a non-empty prompt.") |
|
|
providers = ["auto", "replicate", "fal-ai"] |
|
|
last_error: Exception | None = None |
|
|
parameters = { |
|
|
"negative_prompt": negative_prompt or None, |
|
|
"num_inference_steps": steps, |
|
|
"guidance_scale": cfg_scale, |
|
|
"seed": seed if seed != -1 else random.randint(1, 1_000_000_000), |
|
|
"width": width, |
|
|
"height": height, |
|
|
"fps": fps, |
|
|
"duration": duration, |
|
|
} |
|
|
for provider in providers: |
|
|
try: |
|
|
client = InferenceClient(api_key=HF_VIDEO_TOKEN, provider=provider) |
|
|
if hasattr(client, "text_to_video"): |
|
|
num_frames = int(duration * fps) if duration and fps else None |
|
|
extra_body = {} |
|
|
if width: |
|
|
extra_body["width"] = width |
|
|
if height: |
|
|
extra_body["height"] = height |
|
|
if fps: |
|
|
extra_body["fps"] = fps |
|
|
if duration: |
|
|
extra_body["duration"] = duration |
|
|
result = client.text_to_video( |
|
|
prompt=prompt, |
|
|
model=model_id, |
|
|
guidance_scale=cfg_scale, |
|
|
negative_prompt=[negative_prompt] if negative_prompt else None, |
|
|
num_frames=num_frames, |
|
|
num_inference_steps=steps, |
|
|
seed=parameters["seed"], |
|
|
extra_body=extra_body if extra_body else None, |
|
|
) |
|
|
else: |
|
|
result = client.post( |
|
|
model=model_id, |
|
|
json={"inputs": prompt, "parameters": {k: v for k, v in parameters.items() if v is not None}}, |
|
|
) |
|
|
path = _write_video_tmp(result, suffix=".mp4") |
|
|
try: |
|
|
size = os.path.getsize(path) |
|
|
except Exception: |
|
|
size = -1 |
|
|
_log_call_end("Generate_Video", f"provider={provider} path={os.path.basename(path)} bytes={size}") |
|
|
return path |
|
|
except Exception as exc: |
|
|
last_error = exc |
|
|
continue |
|
|
msg = str(last_error) if last_error else "Unknown error" |
|
|
lowered = msg.lower() |
|
|
if "404" in msg: |
|
|
raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and HF token access.") |
|
|
if "503" in msg: |
|
|
raise gr.Error("The model is warming up. Please try again shortly.") |
|
|
if "401" in msg or "403" in msg: |
|
|
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.") |
|
|
if ("api_key" in lowered) or ("hf auth login" in lowered) or ("unauthorized" in lowered) or ("forbidden" in lowered): |
|
|
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.") |
|
|
_log_call_end("Generate_Video", f"error={_truncate_for_log(msg, 200)}") |
|
|
raise gr.Error(f"Video generation failed: {msg}") |
|
|
|
|
|
|
|
|
def build_interface() -> gr.Interface: |
|
|
return gr.Interface( |
|
|
fn=Generate_Video, |
|
|
inputs=[ |
|
|
gr.Textbox(label="Prompt", placeholder="Enter a prompt for the video", lines=2), |
|
|
gr.Textbox( |
|
|
label="Model", |
|
|
value="akhaliq/sora-2", |
|
|
placeholder="creator/model-name", |
|
|
max_lines=1, |
|
|
info="<a href=\"https://huggingface.co/models?pipeline_tag=text-to-video&inference_provider=nebius,cerebras,novita,fireworks-ai,together,fal-ai,groq,featherless-ai,nscale,hyperbolic,sambanova,cohere,replicate,scaleway,publicai,hf-inference&sort=trending\" target=\"_blank\" rel=\"noopener noreferrer\">Browse models</a>", |
|
|
), |
|
|
gr.Textbox(label="Negative Prompt", value="", lines=2), |
|
|
gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Steps"), |
|
|
gr.Slider(minimum=1.0, maximum=20.0, value=3.5, step=0.1, label="CFG Scale"), |
|
|
gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"), |
|
|
gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Width"), |
|
|
gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Height"), |
|
|
gr.Slider(minimum=4, maximum=60, value=24, step=1, label="FPS"), |
|
|
gr.Slider(minimum=1.0, maximum=10.0, value=4.0, step=0.5, label="Duration (s)"), |
|
|
], |
|
|
outputs=gr.Video(label="Generated Video", show_download_button=True, format="mp4"), |
|
|
title="Generate Video", |
|
|
description=( |
|
|
"<div style=\"text-align:center\">Generate short videos via Hugging Face serverless inference. " |
|
|
"Default model is Sora-2.</div>" |
|
|
), |
|
|
api_description=TOOL_SUMMARY, |
|
|
flagging_mode="never", |
|
|
show_api=True, |
|
|
) |
|
|
|
|
|
|
|
|
__all__ = ["Generate_Video", "build_interface"] |
|
|
|