adding FIlterer process for better Deep_Research reports
Browse files- Modules/Deep_Research.py +208 -79
Modules/Deep_Research.py
CHANGED
|
@@ -4,10 +4,10 @@ import os
|
|
| 4 |
import re
|
| 5 |
import tempfile
|
| 6 |
import time
|
| 7 |
-
from collections import deque
|
| 8 |
from concurrent.futures import Future, ThreadPoolExecutor, as_completed
|
| 9 |
from datetime import datetime
|
| 10 |
-
from typing import Annotated, Dict, List, Tuple
|
| 11 |
from urllib.parse import urlparse
|
| 12 |
|
| 13 |
import gradio as gr
|
|
@@ -63,6 +63,14 @@ RESEARCHER_SYSTEM_PROMPT = (
|
|
| 63 |
"</planning_rules>\n\n"
|
| 64 |
)
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
class SlowHost(Exception):
|
| 68 |
pass
|
|
@@ -161,6 +169,51 @@ def _build_research_prompt(summary: str, queries: List[str], url_list: List[str]
|
|
| 161 |
return "\n\n".join(prompt_parts)
|
| 162 |
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
def _write_report_tmp(text: str) -> str:
|
| 165 |
tmp_dir = tempfile.mkdtemp(prefix="deep_research_")
|
| 166 |
path = os.path.join(tmp_dir, "research_report.txt")
|
|
@@ -169,6 +222,76 @@ def _write_report_tmp(text: str) -> str:
|
|
| 169 |
return path
|
| 170 |
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
@autodoc(
|
| 173 |
summary=TOOL_SUMMARY,
|
| 174 |
)
|
|
@@ -217,6 +340,11 @@ def Deep_Research(
|
|
| 217 |
def time_left() -> float:
|
| 218 |
return max(0.0, deadline - time.time())
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
all_urls: list[str] = []
|
| 221 |
tasks = []
|
| 222 |
with ThreadPoolExecutor(max_workers=min(5, sum(1 for q in queries if q.strip())) or 1) as executor:
|
|
@@ -279,71 +407,79 @@ def Deep_Research(
|
|
| 279 |
return any(path.endswith(ext) for ext in skip_exts)
|
| 280 |
|
| 281 |
all_urls = [url for url in all_urls if not _skip_url(url)]
|
| 282 |
-
|
| 283 |
-
if all_urls:
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
prompt = _build_research_prompt(summary=summary or "", queries=[q for q in queries if q.strip()], url_list=list(pages.keys()), pages_map=pages)
|
| 343 |
-
now = datetime.now().astimezone()
|
| 344 |
-
date_str = now.strftime("%A, %B %d, %Y %I:%M %p %Z").strip()
|
| 345 |
-
if not date_str:
|
| 346 |
-
date_str = now.isoformat()
|
| 347 |
system_message = {"role": "system", "content": RESEARCHER_SYSTEM_PROMPT}
|
| 348 |
date_message = {"role": "user", "content": f"The current date is {date_str}. Return only the research report."}
|
| 349 |
messages = [
|
|
@@ -358,19 +494,9 @@ def Deep_Research(
|
|
| 358 |
print(f"[PIPELINE] Fetch complete: pages={len(pages)}, unique_urls={len(pages.keys())}, prompt_chars={prompt_chars}", flush=True)
|
| 359 |
print("[PIPELINE] Starting inference (provider=cerebras, model=Qwen/Qwen3-235B-A22B-Thinking-2507)", flush=True)
|
| 360 |
|
| 361 |
-
def _run_inference(provider: str, max_tokens: int, temp: float, top_p: float):
|
| 362 |
-
client = InferenceClient(provider=provider, api_key=HF_TEXTGEN_TOKEN)
|
| 363 |
-
return client.chat.completions.create(
|
| 364 |
-
model="Qwen/Qwen3-235B-A22B-Thinking-2507",
|
| 365 |
-
messages=messages,
|
| 366 |
-
max_tokens=max_tokens,
|
| 367 |
-
temperature=temp,
|
| 368 |
-
top_p=top_p,
|
| 369 |
-
)
|
| 370 |
-
|
| 371 |
try:
|
| 372 |
print("[LLM] Attempt 1: provider=cerebras, max_tokens=32768", flush=True)
|
| 373 |
-
completion =
|
| 374 |
except Exception as exc1:
|
| 375 |
print(f"[LLM] Attempt 1 failed: {str(exc1)[:200]}", flush=True)
|
| 376 |
try:
|
|
@@ -386,12 +512,12 @@ def Deep_Research(
|
|
| 386 |
{"role": "user", "content": prompt2},
|
| 387 |
]
|
| 388 |
print("[LLM] Attempt 2: provider=cerebras (trimmed), max_tokens=16384", flush=True)
|
| 389 |
-
completion =
|
| 390 |
except Exception as exc2:
|
| 391 |
print(f"[LLM] Attempt 2 failed: {str(exc2)[:200]}", flush=True)
|
| 392 |
try:
|
| 393 |
print("[LLM] Attempt 3: provider=auto, max_tokens=8192", flush=True)
|
| 394 |
-
completion =
|
| 395 |
except Exception as exc3:
|
| 396 |
_log_call_end("Deep_Research", f"error={_truncate_for_log(str(exc3), 260)}")
|
| 397 |
raise gr.Error(f"Researcher model call failed: {exc3}")
|
|
@@ -423,6 +549,9 @@ def Deep_Research(
|
|
| 423 |
except Exception:
|
| 424 |
pass
|
| 425 |
links_text = "\n".join([f"[{i+1}] {url}" for i, url in enumerate(pages.keys())])
|
|
|
|
|
|
|
|
|
|
| 426 |
file_path = _write_report_tmp(report)
|
| 427 |
elapsed = time.time() - start_ts
|
| 428 |
print(f"[TIMING] Deep_Research elapsed: {elapsed:.2f}s", flush=True)
|
|
|
|
| 4 |
import re
|
| 5 |
import tempfile
|
| 6 |
import time
|
| 7 |
+
from collections import OrderedDict, deque
|
| 8 |
from concurrent.futures import Future, ThreadPoolExecutor, as_completed
|
| 9 |
from datetime import datetime
|
| 10 |
+
from typing import Annotated, Callable, Dict, List, Tuple
|
| 11 |
from urllib.parse import urlparse
|
| 12 |
|
| 13 |
import gradio as gr
|
|
|
|
| 63 |
"</planning_rules>\n\n"
|
| 64 |
)
|
| 65 |
|
| 66 |
+
FILTERER_SYSTEM_PROMPT = (
|
| 67 |
+
"You are Nymbot Filterer, an analyst who selects the most relevant sources for a research task. "
|
| 68 |
+
"You will be given a summary of the research topic (and optional search queries) followed by multiple fetched documents. "
|
| 69 |
+
"Each document includes its URL and a truncated excerpt. Evaluate how well each source helps answer the research topic. "
|
| 70 |
+
"Return only the URLs that should be used for the final research step. Output plain text with exactly one URL per line and no additional commentary, bullets, numbering, or explanations. "
|
| 71 |
+
"If no sources are relevant, return an empty string."
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
|
| 75 |
class SlowHost(Exception):
|
| 76 |
pass
|
|
|
|
| 169 |
return "\n\n".join(prompt_parts)
|
| 170 |
|
| 171 |
|
| 172 |
+
def _build_filter_prompt(summary: str, queries: List[str], pages_map: Dict[str, str]) -> str:
|
| 173 |
+
populated = [q for q in queries if q and q.strip()]
|
| 174 |
+
summary_text = summary or ""
|
| 175 |
+
prompt_sections: List[str] = []
|
| 176 |
+
prompt_sections.append("<research_topic_summary>\n" + summary_text + "\n</research_topic_summary>")
|
| 177 |
+
if populated:
|
| 178 |
+
prompt_sections.append("<search_queries>\n" + "\n".join(populated) + "\n</search_queries>")
|
| 179 |
+
sources: List[str] = []
|
| 180 |
+
for idx, (url, text) in enumerate(pages_map.items(), start=1):
|
| 181 |
+
content = text.strip()
|
| 182 |
+
if not content:
|
| 183 |
+
continue
|
| 184 |
+
sources.append(f"[Source {idx}] URL: {url}\n\n{content}")
|
| 185 |
+
sources_joined, truncated = _truncate_join(sources, max_chars=60_000)
|
| 186 |
+
prompt_sections.append("<candidate_sources>\n" + sources_joined + ("\n\n[NOTE] Sources truncated due to context limits." if truncated else "") + "\n</candidate_sources>")
|
| 187 |
+
prompt_sections.append(
|
| 188 |
+
"<task>\nIdentify which of the provided URLs should be retained for the final research synthesis. "
|
| 189 |
+
"Consider coverage, credibility, and relevance to the research topic. "
|
| 190 |
+
"Return ONLY the URLs you choose, with one URL per line and no additional text.\n</task>"
|
| 191 |
+
)
|
| 192 |
+
return "\n\n".join(prompt_sections)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def _parse_filterer_output(raw: str, allowed_urls: List[str]) -> List[str]:
|
| 196 |
+
if not raw:
|
| 197 |
+
return []
|
| 198 |
+
allowed_set = {url.strip(): idx for idx, url in enumerate(allowed_urls)}
|
| 199 |
+
found_indices: set[int] = set()
|
| 200 |
+
for line in raw.splitlines():
|
| 201 |
+
candidate = line.strip()
|
| 202 |
+
if not candidate:
|
| 203 |
+
continue
|
| 204 |
+
if candidate in allowed_set:
|
| 205 |
+
found_indices.add(allowed_set[candidate])
|
| 206 |
+
continue
|
| 207 |
+
match = re.search(r"https?://[^\s]+", candidate)
|
| 208 |
+
if not match:
|
| 209 |
+
continue
|
| 210 |
+
url = match.group(0).rstrip(".,);]")
|
| 211 |
+
if url in allowed_set:
|
| 212 |
+
found_indices.add(allowed_set[url])
|
| 213 |
+
selected = [allowed_urls[idx] for idx in sorted(found_indices)]
|
| 214 |
+
return selected
|
| 215 |
+
|
| 216 |
+
|
| 217 |
def _write_report_tmp(text: str) -> str:
|
| 218 |
tmp_dir = tempfile.mkdtemp(prefix="deep_research_")
|
| 219 |
path = os.path.join(tmp_dir, "research_report.txt")
|
|
|
|
| 222 |
return path
|
| 223 |
|
| 224 |
|
| 225 |
+
def _fetch_pages_within_budget(urls: List[str], char_limit: int, time_left_fn: Callable[[], float]) -> OrderedDict:
|
| 226 |
+
pages: dict[str, str] = {}
|
| 227 |
+
if not urls:
|
| 228 |
+
return OrderedDict()
|
| 229 |
+
queue = deque(urls)
|
| 230 |
+
attempts: dict[str, int] = {url: 0 for url in urls}
|
| 231 |
+
max_attempts = 2
|
| 232 |
+
max_workers = min(12, max(4, len(urls)))
|
| 233 |
+
in_flight: dict[Future, str] = {}
|
| 234 |
+
delayed: list[tuple[float, str]] = []
|
| 235 |
+
|
| 236 |
+
def schedule_next(executor: ThreadPoolExecutor) -> None:
|
| 237 |
+
while queue and len(in_flight) < max_workers:
|
| 238 |
+
url = queue.popleft()
|
| 239 |
+
if url in pages:
|
| 240 |
+
continue
|
| 241 |
+
attempts.setdefault(url, 0)
|
| 242 |
+
if attempts[url] >= max_attempts:
|
| 243 |
+
continue
|
| 244 |
+
attempts[url] += 1
|
| 245 |
+
tl = time_left_fn()
|
| 246 |
+
if tl <= 0.1:
|
| 247 |
+
return
|
| 248 |
+
per_timeout = 10.0 if tl > 15 else (5.0 if tl > 8 else 2.0)
|
| 249 |
+
future = executor.submit(_fetch_page_markdown_fast, url, char_limit, per_timeout)
|
| 250 |
+
in_flight[future] = url
|
| 251 |
+
|
| 252 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 253 |
+
schedule_next(executor)
|
| 254 |
+
while (in_flight or queue or delayed) and time_left_fn() > 0.2:
|
| 255 |
+
now = time.time()
|
| 256 |
+
if delayed:
|
| 257 |
+
ready: list[tuple[float, str]] = []
|
| 258 |
+
not_ready: list[tuple[float, str]] = []
|
| 259 |
+
for ready_time, delayed_url in delayed:
|
| 260 |
+
(ready if ready_time <= now else not_ready).append((ready_time, delayed_url))
|
| 261 |
+
delayed = not_ready
|
| 262 |
+
for _, delayed_url in ready:
|
| 263 |
+
queue.append(delayed_url)
|
| 264 |
+
if ready:
|
| 265 |
+
schedule_next(executor)
|
| 266 |
+
done = [future for future in list(in_flight.keys()) if future.done()]
|
| 267 |
+
if not done:
|
| 268 |
+
if not queue and delayed:
|
| 269 |
+
next_ready = min((t for t, _ in delayed), default=time.time())
|
| 270 |
+
sleep_for = max(0.0, next_ready - time.time())
|
| 271 |
+
time.sleep(max(0.02, min(0.25, sleep_for)))
|
| 272 |
+
else:
|
| 273 |
+
time.sleep(0.05)
|
| 274 |
+
continue
|
| 275 |
+
for future in done:
|
| 276 |
+
url = in_flight.pop(future)
|
| 277 |
+
try:
|
| 278 |
+
md = future.result()
|
| 279 |
+
if md and not md.startswith("Unsupported content type") and not md.startswith("An error occurred"):
|
| 280 |
+
pages[url] = md
|
| 281 |
+
try:
|
| 282 |
+
print(f"[FETCH OK] {url} (chars={len(md)})", flush=True)
|
| 283 |
+
except Exception:
|
| 284 |
+
pass
|
| 285 |
+
except SlowHost:
|
| 286 |
+
if time_left_fn() > 5.0:
|
| 287 |
+
delayed.append((time.time() + 3.0, url))
|
| 288 |
+
except Exception:
|
| 289 |
+
pass
|
| 290 |
+
schedule_next(executor)
|
| 291 |
+
ordered = OrderedDict((url, pages[url]) for url in urls if url in pages)
|
| 292 |
+
return ordered
|
| 293 |
+
|
| 294 |
+
|
| 295 |
@autodoc(
|
| 296 |
summary=TOOL_SUMMARY,
|
| 297 |
)
|
|
|
|
| 340 |
def time_left() -> float:
|
| 341 |
return max(0.0, deadline - time.time())
|
| 342 |
|
| 343 |
+
now_dt = datetime.now().astimezone()
|
| 344 |
+
date_str = now_dt.strftime("%A, %B %d, %Y %I:%M %p %Z").strip()
|
| 345 |
+
if not date_str:
|
| 346 |
+
date_str = now_dt.isoformat()
|
| 347 |
+
|
| 348 |
all_urls: list[str] = []
|
| 349 |
tasks = []
|
| 350 |
with ThreadPoolExecutor(max_workers=min(5, sum(1 for q in queries if q.strip())) or 1) as executor:
|
|
|
|
| 407 |
return any(path.endswith(ext) for ext in skip_exts)
|
| 408 |
|
| 409 |
all_urls = [url for url in all_urls if not _skip_url(url)]
|
| 410 |
+
truncated_pages = OrderedDict()
|
| 411 |
+
if all_urls and time_left() > 0.2:
|
| 412 |
+
truncated_pages = _fetch_pages_within_budget(all_urls, 3000, time_left)
|
| 413 |
+
print(
|
| 414 |
+
f"[PIPELINE] Initial fetch complete: candidates={len(all_urls)}, truncated_documents={len(truncated_pages)}, time_left={time_left():.2f}s",
|
| 415 |
+
flush=True,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
def _invoke_chat(messages, provider: str, max_tokens: int, temp: float, top_p: float):
|
| 419 |
+
client = InferenceClient(provider=provider, api_key=HF_TEXTGEN_TOKEN)
|
| 420 |
+
return client.chat.completions.create(
|
| 421 |
+
model="Qwen/Qwen3-235B-A22B-Thinking-2507",
|
| 422 |
+
messages=messages,
|
| 423 |
+
max_tokens=max_tokens,
|
| 424 |
+
temperature=temp,
|
| 425 |
+
top_p=top_p,
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
filtered_urls: List[str] = list(truncated_pages.keys())
|
| 429 |
+
filter_output = ""
|
| 430 |
+
filter_used_fallback = False
|
| 431 |
+
filter_success = False
|
| 432 |
+
if truncated_pages and time_left() > 3.0:
|
| 433 |
+
filter_prompt = _build_filter_prompt(summary or "", [q for q in queries if q.strip()], truncated_pages)
|
| 434 |
+
filter_messages = [
|
| 435 |
+
{"role": "system", "content": FILTERER_SYSTEM_PROMPT},
|
| 436 |
+
{"role": "user", "content": f"The current date is {date_str}. Consider how recent each source is when deciding relevance."},
|
| 437 |
+
{"role": "user", "content": filter_prompt},
|
| 438 |
+
]
|
| 439 |
+
filter_completion = None
|
| 440 |
+
try:
|
| 441 |
+
print("[FILTER] Attempt 1: provider=cerebras, max_tokens=2048", flush=True)
|
| 442 |
+
filter_completion = _invoke_chat(filter_messages, "cerebras", 2048, 0.2, 0.9)
|
| 443 |
+
except Exception as exc1:
|
| 444 |
+
print(f"[FILTER] Attempt 1 failed: {str(exc1)[:200]}", flush=True)
|
| 445 |
+
try:
|
| 446 |
+
print("[FILTER] Attempt 2: provider=auto, max_tokens=2048", flush=True)
|
| 447 |
+
filter_completion = _invoke_chat(filter_messages, "auto", 2048, 0.2, 0.9)
|
| 448 |
+
except Exception as exc2:
|
| 449 |
+
print(f"[FILTER] Attempt 2 failed: {str(exc2)[:200]}", flush=True)
|
| 450 |
+
if filter_completion and filter_completion.choices:
|
| 451 |
+
filter_output = filter_completion.choices[0].message.content or ""
|
| 452 |
+
filtered_urls = _parse_filterer_output(filter_output, list(truncated_pages.keys()))
|
| 453 |
+
filter_success = bool(filter_output.strip()) and bool(filtered_urls)
|
| 454 |
+
if not filtered_urls:
|
| 455 |
+
filter_used_fallback = True
|
| 456 |
+
fallback_count = min(8, len(truncated_pages))
|
| 457 |
+
filtered_urls = list(truncated_pages.keys())[:fallback_count]
|
| 458 |
+
max_final_urls = 20
|
| 459 |
+
if len(filtered_urls) > max_final_urls:
|
| 460 |
+
filter_used_fallback = True
|
| 461 |
+
filtered_urls = filtered_urls[:max_final_urls]
|
| 462 |
+
if not filter_success:
|
| 463 |
+
filter_used_fallback = True
|
| 464 |
+
print(
|
| 465 |
+
f"[FILTER] Selected URLs={len(filtered_urls)}, fallback={filter_used_fallback}, time_left={time_left():.2f}s",
|
| 466 |
+
flush=True,
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
final_pages_fetched = OrderedDict()
|
| 470 |
+
if filtered_urls and time_left() > 0.2:
|
| 471 |
+
final_pages_fetched = _fetch_pages_within_budget(filtered_urls, 8000, time_left)
|
| 472 |
+
merged_pages = OrderedDict()
|
| 473 |
+
for url in filtered_urls:
|
| 474 |
+
content = final_pages_fetched.get(url) or truncated_pages.get(url) or ""
|
| 475 |
+
if content:
|
| 476 |
+
merged_pages[url] = content
|
| 477 |
+
pages = merged_pages
|
| 478 |
+
print(
|
| 479 |
+
f"[PIPELINE] Final fetch complete: retained_documents={len(pages)}, time_left={time_left():.2f}s",
|
| 480 |
+
flush=True,
|
| 481 |
+
)
|
| 482 |
prompt = _build_research_prompt(summary=summary or "", queries=[q for q in queries if q.strip()], url_list=list(pages.keys()), pages_map=pages)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
system_message = {"role": "system", "content": RESEARCHER_SYSTEM_PROMPT}
|
| 484 |
date_message = {"role": "user", "content": f"The current date is {date_str}. Return only the research report."}
|
| 485 |
messages = [
|
|
|
|
| 494 |
print(f"[PIPELINE] Fetch complete: pages={len(pages)}, unique_urls={len(pages.keys())}, prompt_chars={prompt_chars}", flush=True)
|
| 495 |
print("[PIPELINE] Starting inference (provider=cerebras, model=Qwen/Qwen3-235B-A22B-Thinking-2507)", flush=True)
|
| 496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
try:
|
| 498 |
print("[LLM] Attempt 1: provider=cerebras, max_tokens=32768", flush=True)
|
| 499 |
+
completion = _invoke_chat(messages, "cerebras", max_tokens=32768, temp=0.3, top_p=0.95)
|
| 500 |
except Exception as exc1:
|
| 501 |
print(f"[LLM] Attempt 1 failed: {str(exc1)[:200]}", flush=True)
|
| 502 |
try:
|
|
|
|
| 512 |
{"role": "user", "content": prompt2},
|
| 513 |
]
|
| 514 |
print("[LLM] Attempt 2: provider=cerebras (trimmed), max_tokens=16384", flush=True)
|
| 515 |
+
completion = _invoke_chat(messages, "cerebras", max_tokens=16384, temp=0.7, top_p=0.95)
|
| 516 |
except Exception as exc2:
|
| 517 |
print(f"[LLM] Attempt 2 failed: {str(exc2)[:200]}", flush=True)
|
| 518 |
try:
|
| 519 |
print("[LLM] Attempt 3: provider=auto, max_tokens=8192", flush=True)
|
| 520 |
+
completion = _invoke_chat(messages, "auto", max_tokens=8192, temp=0.7, top_p=0.95)
|
| 521 |
except Exception as exc3:
|
| 522 |
_log_call_end("Deep_Research", f"error={_truncate_for_log(str(exc3), 260)}")
|
| 523 |
raise gr.Error(f"Researcher model call failed: {exc3}")
|
|
|
|
| 549 |
except Exception:
|
| 550 |
pass
|
| 551 |
links_text = "\n".join([f"[{i+1}] {url}" for i, url in enumerate(pages.keys())])
|
| 552 |
+
if links_text:
|
| 553 |
+
sources_section = "\n\n## Sources\n" + "\n".join([f"[{i+1}] {url}" for i, url in enumerate(pages.keys())])
|
| 554 |
+
report = report.rstrip() + sources_section
|
| 555 |
file_path = _write_report_tmp(report)
|
| 556 |
elapsed = time.time() - start_ts
|
| 557 |
print(f"[TIMING] Deep_Research elapsed: {elapsed:.2f}s", flush=True)
|