from __future__ import annotations import os import random from typing import Annotated import gradio as gr from PIL import Image from huggingface_hub import InferenceClient from app import _log_call_end, _log_call_start, _truncate_for_log from ._docstrings import autodoc HF_API_TOKEN = os.getenv("HF_READ_TOKEN") # Single source of truth for the LLM-facing tool description TOOL_SUMMARY = ( "Generate an image from a text prompt via Hugging Face serverless inference; " "tunable model/steps/guidance/size, supports negative prompt and seed; returns a PIL.Image. " "Return the generated media to the user in this format ``." ) @autodoc( summary=TOOL_SUMMARY, ) def Generate_Image( prompt: Annotated[str, "Text description of the image to generate."], model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name' (e.g., black-forest-labs/FLUX.1-Krea-dev)."] = "black-forest-labs/FLUX.1-Krea-dev", negative_prompt: Annotated[str, "What should NOT appear in the image."] = ( "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, " "missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, " "mutated, ugly, disgusting, blurry, amputation, misspellings, typos" ), steps: Annotated[int, "Number of denoising steps (1–100). Higher = slower, potentially higher quality."] = 35, cfg_scale: Annotated[float, "Classifier-free guidance scale (1–20). Higher = follow the prompt more closely."] = 7.0, sampler: Annotated[str, "Sampling method label (UI only). Common options: 'DPM++ 2M Karras', 'DPM++ SDE Karras', 'Euler', 'Euler a', 'Heun', 'DDIM'."] = "DPM++ 2M Karras", seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1, width: Annotated[int, "Output width in pixels (64–1216, multiple of 32 recommended)."] = 1024, height: Annotated[int, "Output height in pixels (64–1216, multiple of 32 recommended)."] = 1024, ) -> Image.Image: _log_call_start( "Generate_Image", prompt=_truncate_for_log(prompt, 200), model_id=model_id, steps=steps, cfg_scale=cfg_scale, seed=seed, size=f"{width}x{height}", ) if not prompt or not prompt.strip(): _log_call_end("Generate_Image", "error=empty prompt") raise gr.Error("Please provide a non-empty prompt.") enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." providers = ["auto", "replicate", "fal-ai"] last_error: Exception | None = None for provider in providers: try: client = InferenceClient(api_key=HF_API_TOKEN, provider=provider) image = client.text_to_image( prompt=enhanced_prompt, negative_prompt=negative_prompt, model=model_id, width=width, height=height, num_inference_steps=steps, guidance_scale=cfg_scale, seed=seed if seed != -1 else random.randint(1, 1_000_000_000), ) _log_call_end("Generate_Image", f"provider={provider} size={image.size}") return image except Exception as exc: # pylint: disable=broad-except last_error = exc continue msg = str(last_error) if last_error else "Unknown error" lowered = msg.lower() if "404" in msg: raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and your HF token access.") if "503" in msg: raise gr.Error("The model is warming up. Please try again shortly.") if "401" in msg or "403" in msg: raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.") if ("api_key" in lowered) or ("hf auth login" in lowered) or ("unauthorized" in lowered) or ("forbidden" in lowered): raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.") _log_call_end("Generate_Image", f"error={_truncate_for_log(msg, 200)}") raise gr.Error(f"Image generation failed: {msg}") def build_interface() -> gr.Interface: return gr.Interface( fn=Generate_Image, inputs=[ gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=2), gr.Textbox( label="Model", value="black-forest-labs/FLUX.1-Krea-dev", placeholder="creator/model-name", max_lines=1, info="Browse models", ), gr.Textbox( label="Negative Prompt", value=( "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, " "missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, " "mutated, ugly, disgusting, blurry, amputation, misspellings, typos" ), lines=2, ), gr.Slider(minimum=1, maximum=100, value=35, step=1, label="Steps"), gr.Slider(minimum=1.0, maximum=20.0, value=7.0, step=0.1, label="CFG Scale"), gr.Radio( label="Sampler", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"], ), gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"), gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Width"), gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Height"), ], outputs=gr.Image(label="Generated Image"), title="Generate Image", description=( "