Spaces:
Build error
Build error
leaner ParquetScheduler
Browse files- app_parquet.py +77 -40
app_parquet.py
CHANGED
|
@@ -6,13 +6,14 @@ import shutil
|
|
| 6 |
import tempfile
|
| 7 |
import uuid
|
| 8 |
from pathlib import Path
|
| 9 |
-
from typing import Any, Dict, List
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
import pyarrow as pa
|
| 13 |
import pyarrow.parquet as pq
|
| 14 |
from gradio_client import Client
|
| 15 |
from huggingface_hub import CommitScheduler
|
|
|
|
| 16 |
|
| 17 |
#######################
|
| 18 |
# Parquet scheduler #
|
|
@@ -21,54 +22,95 @@ from huggingface_hub import CommitScheduler
|
|
| 21 |
|
| 22 |
|
| 23 |
class ParquetScheduler(CommitScheduler):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def append(self, row: Dict[str, Any]) -> None:
|
|
|
|
| 25 |
with self.lock:
|
| 26 |
-
|
| 27 |
-
self.rows = []
|
| 28 |
-
self.rows.append(row)
|
| 29 |
-
|
| 30 |
-
def set_schema(self, schema: Dict[str, Dict[str, str]]) -> None:
|
| 31 |
-
"""
|
| 32 |
-
Define a schema to help `datasets` load the generated library.
|
| 33 |
-
|
| 34 |
-
This method is optional and can be called once just after the scheduler had been created. If it is not called,
|
| 35 |
-
the schema is automatically inferred before pushing the data to the Hub.
|
| 36 |
-
|
| 37 |
-
See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of
|
| 38 |
-
possible values.
|
| 39 |
-
|
| 40 |
-
Example:
|
| 41 |
-
```py
|
| 42 |
-
scheduler.set_schema({
|
| 43 |
-
"prompt": {"_type": "Value", "dtype": "string"},
|
| 44 |
-
"negative_prompt": {"_type": "Value", "dtype": "string"},
|
| 45 |
-
"guidance_scale": {"_type": "Value", "dtype": "int64"},
|
| 46 |
-
"image": {"_type": "Image"},
|
| 47 |
-
})
|
| 48 |
-
```
|
| 49 |
-
"""
|
| 50 |
-
self._schema = schema
|
| 51 |
|
| 52 |
def push_to_hub(self):
|
| 53 |
# Check for new rows to push
|
| 54 |
with self.lock:
|
| 55 |
-
rows =
|
| 56 |
-
self.
|
| 57 |
if not rows:
|
| 58 |
return
|
| 59 |
print(f"Got {len(rows)} item(s) to commit.")
|
| 60 |
|
| 61 |
# Load images + create 'features' config for datasets library
|
| 62 |
-
|
| 63 |
path_to_cleanup: List[Path] = []
|
| 64 |
for row in rows:
|
| 65 |
for key, value in row.items():
|
| 66 |
# Infer schema (for `datasets` library)
|
| 67 |
-
if key not in
|
| 68 |
-
|
| 69 |
|
| 70 |
# Load binary files if necessary
|
| 71 |
-
if
|
| 72 |
# It's an image or audio: we load the bytes and remember to cleanup the file
|
| 73 |
file_path = Path(value)
|
| 74 |
if file_path.is_file():
|
|
@@ -80,7 +122,7 @@ class ParquetScheduler(CommitScheduler):
|
|
| 80 |
|
| 81 |
# Complete rows if needed
|
| 82 |
for row in rows:
|
| 83 |
-
for feature in
|
| 84 |
if feature not in row:
|
| 85 |
row[feature] = None
|
| 86 |
|
|
@@ -89,7 +131,7 @@ class ParquetScheduler(CommitScheduler):
|
|
| 89 |
|
| 90 |
# Add metadata (used by datasets library)
|
| 91 |
table = table.replace_schema_metadata(
|
| 92 |
-
{"huggingface": json.dumps({"info": {"features":
|
| 93 |
)
|
| 94 |
|
| 95 |
# Write to parquet file
|
|
@@ -142,12 +184,7 @@ def _infer_schema(key: str, value: Any) -> Dict[str, str]:
|
|
| 142 |
PARQUET_DATASET_DIR = Path("parquet_dataset")
|
| 143 |
PARQUET_DATASET_DIR.mkdir(parents=True, exist_ok=True)
|
| 144 |
|
| 145 |
-
scheduler = ParquetScheduler(
|
| 146 |
-
repo_id="example-space-to-dataset-parquet",
|
| 147 |
-
repo_type="dataset",
|
| 148 |
-
folder_path=PARQUET_DATASET_DIR,
|
| 149 |
-
path_in_repo="data",
|
| 150 |
-
)
|
| 151 |
|
| 152 |
client = Client("stabilityai/stable-diffusion")
|
| 153 |
|
|
|
|
| 6 |
import tempfile
|
| 7 |
import uuid
|
| 8 |
from pathlib import Path
|
| 9 |
+
from typing import Any, Dict, List, Optional, Union
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
import pyarrow as pa
|
| 13 |
import pyarrow.parquet as pq
|
| 14 |
from gradio_client import Client
|
| 15 |
from huggingface_hub import CommitScheduler
|
| 16 |
+
from huggingface_hub.hf_api import HfApi
|
| 17 |
|
| 18 |
#######################
|
| 19 |
# Parquet scheduler #
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
class ParquetScheduler(CommitScheduler):
|
| 25 |
+
"""
|
| 26 |
+
Usage: configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 1 `.append`
|
| 27 |
+
call will result in 1 row in your final dataset.
|
| 28 |
+
|
| 29 |
+
```py
|
| 30 |
+
# Start scheduler
|
| 31 |
+
>>> scheduler = ParquetScheduler(repo_id="my-parquet-dataset")
|
| 32 |
+
|
| 33 |
+
# Append some data to be uploaded
|
| 34 |
+
>>> scheduler.append({...})
|
| 35 |
+
>>> scheduler.append({...})
|
| 36 |
+
>>> scheduler.append({...})
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
The scheduler will automatically infer the schema from the data it pushes.
|
| 40 |
+
Optionally, you can manually set the schema yourself:
|
| 41 |
+
|
| 42 |
+
```py
|
| 43 |
+
>>> scheduler = ParquetScheduler(
|
| 44 |
+
... repo_id="my-parquet-dataset",
|
| 45 |
+
... schema={
|
| 46 |
+
... "prompt": {"_type": "Value", "dtype": "string"},
|
| 47 |
+
... "negative_prompt": {"_type": "Value", "dtype": "string"},
|
| 48 |
+
... "guidance_scale": {"_type": "Value", "dtype": "int64"},
|
| 49 |
+
... "image": {"_type": "Image"},
|
| 50 |
+
... },
|
| 51 |
+
... )
|
| 52 |
+
|
| 53 |
+
See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of
|
| 54 |
+
possible values.
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
def __init__(
|
| 58 |
+
self,
|
| 59 |
+
*,
|
| 60 |
+
repo_id: str,
|
| 61 |
+
schema: Optional[Dict[str, Dict[str, str]]] = None,
|
| 62 |
+
every: Union[int, float] = 5,
|
| 63 |
+
path_in_repo: Optional[str] = "data",
|
| 64 |
+
repo_type: Optional[str] = "dataset",
|
| 65 |
+
revision: Optional[str] = None,
|
| 66 |
+
private: bool = False,
|
| 67 |
+
token: Optional[str] = None,
|
| 68 |
+
allow_patterns: Union[List[str], str, None] = None,
|
| 69 |
+
ignore_patterns: Union[List[str], str, None] = None,
|
| 70 |
+
hf_api: Optional[HfApi] = None,
|
| 71 |
+
) -> None:
|
| 72 |
+
super().__init__(
|
| 73 |
+
repo_id=repo_id,
|
| 74 |
+
folder_path="dummy", # not used by the scheduler
|
| 75 |
+
every=every,
|
| 76 |
+
path_in_repo=path_in_repo,
|
| 77 |
+
repo_type=repo_type,
|
| 78 |
+
revision=revision,
|
| 79 |
+
private=private,
|
| 80 |
+
token=token,
|
| 81 |
+
allow_patterns=allow_patterns,
|
| 82 |
+
ignore_patterns=ignore_patterns,
|
| 83 |
+
hf_api=hf_api,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
self._rows: List[Dict[str, Any]] = []
|
| 87 |
+
self._schema = schema
|
| 88 |
+
|
| 89 |
def append(self, row: Dict[str, Any]) -> None:
|
| 90 |
+
"""Add a new item to be uploaded."""
|
| 91 |
with self.lock:
|
| 92 |
+
self._rows.append(row)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
def push_to_hub(self):
|
| 95 |
# Check for new rows to push
|
| 96 |
with self.lock:
|
| 97 |
+
rows = self._rows
|
| 98 |
+
self._rows = []
|
| 99 |
if not rows:
|
| 100 |
return
|
| 101 |
print(f"Got {len(rows)} item(s) to commit.")
|
| 102 |
|
| 103 |
# Load images + create 'features' config for datasets library
|
| 104 |
+
schema: Dict[str, Dict] = self._schema or {}
|
| 105 |
path_to_cleanup: List[Path] = []
|
| 106 |
for row in rows:
|
| 107 |
for key, value in row.items():
|
| 108 |
# Infer schema (for `datasets` library)
|
| 109 |
+
if key not in schema:
|
| 110 |
+
schema[key] = _infer_schema(key, value)
|
| 111 |
|
| 112 |
# Load binary files if necessary
|
| 113 |
+
if schema[key]["_type"] in ("Image", "Audio"):
|
| 114 |
# It's an image or audio: we load the bytes and remember to cleanup the file
|
| 115 |
file_path = Path(value)
|
| 116 |
if file_path.is_file():
|
|
|
|
| 122 |
|
| 123 |
# Complete rows if needed
|
| 124 |
for row in rows:
|
| 125 |
+
for feature in schema:
|
| 126 |
if feature not in row:
|
| 127 |
row[feature] = None
|
| 128 |
|
|
|
|
| 131 |
|
| 132 |
# Add metadata (used by datasets library)
|
| 133 |
table = table.replace_schema_metadata(
|
| 134 |
+
{"huggingface": json.dumps({"info": {"features": schema}})}
|
| 135 |
)
|
| 136 |
|
| 137 |
# Write to parquet file
|
|
|
|
| 184 |
PARQUET_DATASET_DIR = Path("parquet_dataset")
|
| 185 |
PARQUET_DATASET_DIR.mkdir(parents=True, exist_ok=True)
|
| 186 |
|
| 187 |
+
scheduler = ParquetScheduler(repo_id="example-space-to-dataset-parquet")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
client = Client("stabilityai/stable-diffusion")
|
| 190 |
|