Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import re | |
| from ..utils import is_peft_version, logging | |
| logger = logging.get_logger(__name__) | |
| def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", block_slice_pos=5): | |
| # 1. get all state_dict_keys | |
| all_keys = list(state_dict.keys()) | |
| sgm_patterns = ["input_blocks", "middle_block", "output_blocks"] | |
| # 2. check if needs remapping, if not return original dict | |
| is_in_sgm_format = False | |
| for key in all_keys: | |
| if any(p in key for p in sgm_patterns): | |
| is_in_sgm_format = True | |
| break | |
| if not is_in_sgm_format: | |
| return state_dict | |
| # 3. Else remap from SGM patterns | |
| new_state_dict = {} | |
| inner_block_map = ["resnets", "attentions", "upsamplers"] | |
| # Retrieves # of down, mid and up blocks | |
| input_block_ids, middle_block_ids, output_block_ids = set(), set(), set() | |
| for layer in all_keys: | |
| if "text" in layer: | |
| new_state_dict[layer] = state_dict.pop(layer) | |
| else: | |
| layer_id = int(layer.split(delimiter)[:block_slice_pos][-1]) | |
| if sgm_patterns[0] in layer: | |
| input_block_ids.add(layer_id) | |
| elif sgm_patterns[1] in layer: | |
| middle_block_ids.add(layer_id) | |
| elif sgm_patterns[2] in layer: | |
| output_block_ids.add(layer_id) | |
| else: | |
| raise ValueError(f"Checkpoint not supported because layer {layer} not supported.") | |
| input_blocks = { | |
| layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key] | |
| for layer_id in input_block_ids | |
| } | |
| middle_blocks = { | |
| layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key] | |
| for layer_id in middle_block_ids | |
| } | |
| output_blocks = { | |
| layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key] | |
| for layer_id in output_block_ids | |
| } | |
| # Rename keys accordingly | |
| for i in input_block_ids: | |
| block_id = (i - 1) // (unet_config.layers_per_block + 1) | |
| layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1) | |
| for key in input_blocks[i]: | |
| inner_block_id = int(key.split(delimiter)[block_slice_pos]) | |
| inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers" | |
| inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0" | |
| new_key = delimiter.join( | |
| key.split(delimiter)[: block_slice_pos - 1] | |
| + [str(block_id), inner_block_key, inner_layers_in_block] | |
| + key.split(delimiter)[block_slice_pos + 1 :] | |
| ) | |
| new_state_dict[new_key] = state_dict.pop(key) | |
| for i in middle_block_ids: | |
| key_part = None | |
| if i == 0: | |
| key_part = [inner_block_map[0], "0"] | |
| elif i == 1: | |
| key_part = [inner_block_map[1], "0"] | |
| elif i == 2: | |
| key_part = [inner_block_map[0], "1"] | |
| else: | |
| raise ValueError(f"Invalid middle block id {i}.") | |
| for key in middle_blocks[i]: | |
| new_key = delimiter.join( | |
| key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:] | |
| ) | |
| new_state_dict[new_key] = state_dict.pop(key) | |
| for i in output_block_ids: | |
| block_id = i // (unet_config.layers_per_block + 1) | |
| layer_in_block_id = i % (unet_config.layers_per_block + 1) | |
| for key in output_blocks[i]: | |
| inner_block_id = int(key.split(delimiter)[block_slice_pos]) | |
| inner_block_key = inner_block_map[inner_block_id] | |
| inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0" | |
| new_key = delimiter.join( | |
| key.split(delimiter)[: block_slice_pos - 1] | |
| + [str(block_id), inner_block_key, inner_layers_in_block] | |
| + key.split(delimiter)[block_slice_pos + 1 :] | |
| ) | |
| new_state_dict[new_key] = state_dict.pop(key) | |
| if len(state_dict) > 0: | |
| raise ValueError("At this point all state dict entries have to be converted.") | |
| return new_state_dict | |
| def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"): | |
| """ | |
| Converts a non-Diffusers LoRA state dict to a Diffusers compatible state dict. | |
| Args: | |
| state_dict (`dict`): The state dict to convert. | |
| unet_name (`str`, optional): The name of the U-Net module in the Diffusers model. Defaults to "unet". | |
| text_encoder_name (`str`, optional): The name of the text encoder module in the Diffusers model. Defaults to | |
| "text_encoder". | |
| Returns: | |
| `tuple`: A tuple containing the converted state dict and a dictionary of alphas. | |
| """ | |
| unet_state_dict = {} | |
| te_state_dict = {} | |
| te2_state_dict = {} | |
| network_alphas = {} | |
| # Check for DoRA-enabled LoRAs. | |
| dora_present_in_unet = any("dora_scale" in k and "lora_unet_" in k for k in state_dict) | |
| dora_present_in_te = any("dora_scale" in k and ("lora_te_" in k or "lora_te1_" in k) for k in state_dict) | |
| dora_present_in_te2 = any("dora_scale" in k and "lora_te2_" in k for k in state_dict) | |
| if dora_present_in_unet or dora_present_in_te or dora_present_in_te2: | |
| if is_peft_version("<", "0.9.0"): | |
| raise ValueError( | |
| "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
| ) | |
| # Iterate over all LoRA weights. | |
| all_lora_keys = list(state_dict.keys()) | |
| for key in all_lora_keys: | |
| if not key.endswith("lora_down.weight"): | |
| continue | |
| # Extract LoRA name. | |
| lora_name = key.split(".")[0] | |
| # Find corresponding up weight and alpha. | |
| lora_name_up = lora_name + ".lora_up.weight" | |
| lora_name_alpha = lora_name + ".alpha" | |
| # Handle U-Net LoRAs. | |
| if lora_name.startswith("lora_unet_"): | |
| diffusers_name = _convert_unet_lora_key(key) | |
| # Store down and up weights. | |
| unet_state_dict[diffusers_name] = state_dict.pop(key) | |
| unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) | |
| # Store DoRA scale if present. | |
| if dora_present_in_unet: | |
| dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down." | |
| unet_state_dict[ | |
| diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.") | |
| ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) | |
| # Handle text encoder LoRAs. | |
| elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")): | |
| diffusers_name = _convert_text_encoder_lora_key(key, lora_name) | |
| # Store down and up weights for te or te2. | |
| if lora_name.startswith(("lora_te_", "lora_te1_")): | |
| te_state_dict[diffusers_name] = state_dict.pop(key) | |
| te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) | |
| else: | |
| te2_state_dict[diffusers_name] = state_dict.pop(key) | |
| te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) | |
| # Store DoRA scale if present. | |
| if dora_present_in_te or dora_present_in_te2: | |
| dora_scale_key_to_replace_te = ( | |
| "_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer." | |
| ) | |
| if lora_name.startswith(("lora_te_", "lora_te1_")): | |
| te_state_dict[ | |
| diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.") | |
| ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) | |
| elif lora_name.startswith("lora_te2_"): | |
| te2_state_dict[ | |
| diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.") | |
| ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) | |
| # Store alpha if present. | |
| if lora_name_alpha in state_dict: | |
| alpha = state_dict.pop(lora_name_alpha).item() | |
| network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha)) | |
| # Check if any keys remain. | |
| if len(state_dict) > 0: | |
| raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}") | |
| logger.info("Non-diffusers checkpoint detected.") | |
| # Construct final state dict. | |
| unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()} | |
| te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()} | |
| te2_state_dict = ( | |
| {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()} | |
| if len(te2_state_dict) > 0 | |
| else None | |
| ) | |
| if te2_state_dict is not None: | |
| te_state_dict.update(te2_state_dict) | |
| new_state_dict = {**unet_state_dict, **te_state_dict} | |
| return new_state_dict, network_alphas | |
| def _convert_unet_lora_key(key): | |
| """ | |
| Converts a U-Net LoRA key to a Diffusers compatible key. | |
| """ | |
| diffusers_name = key.replace("lora_unet_", "").replace("_", ".") | |
| # Replace common U-Net naming patterns. | |
| diffusers_name = diffusers_name.replace("input.blocks", "down_blocks") | |
| diffusers_name = diffusers_name.replace("down.blocks", "down_blocks") | |
| diffusers_name = diffusers_name.replace("middle.block", "mid_block") | |
| diffusers_name = diffusers_name.replace("mid.block", "mid_block") | |
| diffusers_name = diffusers_name.replace("output.blocks", "up_blocks") | |
| diffusers_name = diffusers_name.replace("up.blocks", "up_blocks") | |
| diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks") | |
| diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora") | |
| diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora") | |
| diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora") | |
| diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora") | |
| diffusers_name = diffusers_name.replace("proj.in", "proj_in") | |
| diffusers_name = diffusers_name.replace("proj.out", "proj_out") | |
| diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj") | |
| # SDXL specific conversions. | |
| if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name: | |
| pattern = r"\.\d+(?=\D*$)" | |
| diffusers_name = re.sub(pattern, "", diffusers_name, count=1) | |
| if ".in." in diffusers_name: | |
| diffusers_name = diffusers_name.replace("in.layers.2", "conv1") | |
| if ".out." in diffusers_name: | |
| diffusers_name = diffusers_name.replace("out.layers.3", "conv2") | |
| if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name: | |
| diffusers_name = diffusers_name.replace("op", "conv") | |
| if "skip" in diffusers_name: | |
| diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut") | |
| # LyCORIS specific conversions. | |
| if "time.emb.proj" in diffusers_name: | |
| diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj") | |
| if "conv.shortcut" in diffusers_name: | |
| diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut") | |
| # General conversions. | |
| if "transformer_blocks" in diffusers_name: | |
| if "attn1" in diffusers_name or "attn2" in diffusers_name: | |
| diffusers_name = diffusers_name.replace("attn1", "attn1.processor") | |
| diffusers_name = diffusers_name.replace("attn2", "attn2.processor") | |
| elif "ff" in diffusers_name: | |
| pass | |
| elif any(key in diffusers_name for key in ("proj_in", "proj_out")): | |
| pass | |
| else: | |
| pass | |
| return diffusers_name | |
| def _convert_text_encoder_lora_key(key, lora_name): | |
| """ | |
| Converts a text encoder LoRA key to a Diffusers compatible key. | |
| """ | |
| if lora_name.startswith(("lora_te_", "lora_te1_")): | |
| key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_" | |
| else: | |
| key_to_replace = "lora_te2_" | |
| diffusers_name = key.replace(key_to_replace, "").replace("_", ".") | |
| diffusers_name = diffusers_name.replace("text.model", "text_model") | |
| diffusers_name = diffusers_name.replace("self.attn", "self_attn") | |
| diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora") | |
| diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora") | |
| diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora") | |
| diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora") | |
| diffusers_name = diffusers_name.replace("text.projection", "text_projection") | |
| if "self_attn" in diffusers_name or "text_projection" in diffusers_name: | |
| pass | |
| elif "mlp" in diffusers_name: | |
| # Be aware that this is the new diffusers convention and the rest of the code might | |
| # not utilize it yet. | |
| diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.") | |
| return diffusers_name | |
| def _get_alpha_name(lora_name_alpha, diffusers_name, alpha): | |
| """ | |
| Gets the correct alpha name for the Diffusers model. | |
| """ | |
| if lora_name_alpha.startswith("lora_unet_"): | |
| prefix = "unet." | |
| elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")): | |
| prefix = "text_encoder." | |
| else: | |
| prefix = "text_encoder_2." | |
| new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha" | |
| return {new_name: alpha} | |