Spaces:
Running
on
Zero
Running
on
Zero
| import cv2 | |
| import math | |
| import numpy as np | |
| import os | |
| import os.path as osp | |
| import random | |
| import time | |
| import torch | |
| from pathlib import Path | |
| import albumentations | |
| import torch.nn.functional as F | |
| from torch.utils import data as data | |
| from basicsr.utils import DiffJPEG | |
| from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels | |
| from basicsr.data.transforms import augment | |
| from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor | |
| from basicsr.utils.registry import DATASET_REGISTRY | |
| from basicsr.utils.img_process_util import filter2D | |
| from basicsr.data.transforms import paired_random_crop, random_crop | |
| from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt | |
| from utils import util_image | |
| def readline_txt(txt_file): | |
| txt_file = [txt_file, ] if isinstance(txt_file, str) else txt_file | |
| out = [] | |
| for txt_file_current in txt_file: | |
| with open(txt_file_current, 'r') as ff: | |
| out.extend([x[:-1] for x in ff.readlines()]) | |
| return out | |
| class RealESRGANDataset(data.Dataset): | |
| """Dataset used for Real-ESRGAN model: | |
| Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. | |
| It loads gt (Ground-Truth) images, and augments them. | |
| It also generates blur kernels and sinc kernels for generating low-quality images. | |
| Note that the low-quality images are processed in tensors on GPUS for faster processing. | |
| Args: | |
| opt (dict): Config for train datasets. It contains the following keys: | |
| dataroot_gt (str): Data root path for gt. | |
| meta_info (str): Path for meta information file. | |
| io_backend (dict): IO backend type and other kwarg. | |
| use_hflip (bool): Use horizontal flips. | |
| use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). | |
| Please see more options in the codes. | |
| """ | |
| def __init__(self, opt, mode='training'): | |
| super(RealESRGANDataset, self).__init__() | |
| self.opt = opt | |
| self.file_client = None | |
| self.io_backend_opt = opt['io_backend'] | |
| # file client (lmdb io backend) | |
| self.image_paths = [] | |
| self.text_paths = [] | |
| self.moment_paths = [] | |
| if opt.get('data_source', None) is not None: | |
| for ii in range(len(opt['data_source'])): | |
| configs = opt['data_source'].get(f'source{ii+1}') | |
| root_path = Path(configs.root_path) | |
| im_folder = root_path / configs.image_path | |
| im_ext = configs.im_ext | |
| image_stems = sorted([x.stem for x in im_folder.glob(f"*.{im_ext}")]) | |
| if configs.get('length', None) is not None: | |
| assert configs.length < len(image_stems) | |
| image_stems = image_stems[:configs.length] | |
| if configs.get("text_path", None) is not None: | |
| text_folder = root_path / configs.text_path | |
| text_stems = [x.stem for x in text_folder.glob("*.txt")] | |
| image_stems = sorted(list(set(image_stems).intersection(set(text_stems)))) | |
| self.text_paths.extend([str(text_folder / f"{x}.txt") for x in image_stems]) | |
| else: | |
| self.text_paths.extend([None, ] * len(image_stems)) | |
| self.image_paths.extend([str(im_folder / f"{x}.{im_ext}") for x in image_stems]) | |
| if configs.get("moment_path", None) is not None: | |
| moment_folder = root_path / configs.moment_path | |
| self.moment_paths.extend([str(moment_folder / f"{x}.npy") for x in image_stems]) | |
| else: | |
| self.moment_paths.extend([None, ] * len(image_stems)) | |
| # blur settings for the first degradation | |
| self.blur_kernel_size = opt['blur_kernel_size'] | |
| self.kernel_list = opt['kernel_list'] | |
| self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability | |
| self.blur_sigma = opt['blur_sigma'] | |
| self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels | |
| self.betap_range = opt['betap_range'] # betap used in plateau blur kernels | |
| self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters | |
| # blur settings for the second degradation | |
| self.blur_kernel_size2 = opt['blur_kernel_size2'] | |
| self.kernel_list2 = opt['kernel_list2'] | |
| self.kernel_prob2 = opt['kernel_prob2'] | |
| self.blur_sigma2 = opt['blur_sigma2'] | |
| self.betag_range2 = opt['betag_range2'] | |
| self.betap_range2 = opt['betap_range2'] | |
| self.sinc_prob2 = opt['sinc_prob2'] | |
| # a final sinc filter | |
| self.final_sinc_prob = opt['final_sinc_prob'] | |
| self.kernel_range1 = [x for x in range(3, opt['blur_kernel_size'], 2)] # kernel size ranges from 7 to 21 | |
| self.kernel_range2 = [x for x in range(3, opt['blur_kernel_size2'], 2)] # kernel size ranges from 7 to 21 | |
| # TODO: kernel range is now hard-coded, should be in the configure file | |
| # convolving with pulse tensor brings no blurry effect | |
| self.pulse_tensor = torch.zeros(opt['blur_kernel_size2'], opt['blur_kernel_size2']).float() | |
| self.pulse_tensor[opt['blur_kernel_size2']//2, opt['blur_kernel_size2']//2] = 1 | |
| self.mode = mode | |
| def __getitem__(self, index): | |
| if self.file_client is None: | |
| self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
| # -------------------------------- Load gt images -------------------------------- # | |
| # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32. | |
| gt_path = self.image_paths[index] | |
| # avoid errors caused by high latency in reading files | |
| retry = 3 | |
| while retry > 0: | |
| try: | |
| img_bytes = self.file_client.get(gt_path, 'gt') | |
| img_gt = imfrombytes(img_bytes, float32=True) | |
| except: | |
| index = random.randint(0, self.__len__()) | |
| gt_path = self.image_paths[index] | |
| time.sleep(1) # sleep 1s for occasional server congestion | |
| finally: | |
| retry -= 1 | |
| if self.mode == 'testing': | |
| if not hasattr(self, 'test_aug'): | |
| self.test_aug = albumentations.Compose([ | |
| albumentations.SmallestMaxSize( | |
| max_size=self.opt['gt_size'], | |
| interpolation=cv2.INTER_AREA, | |
| ), | |
| albumentations.CenterCrop(self.opt['gt_size'], self.opt['gt_size']), | |
| ]) | |
| img_gt = self.test_aug(image=img_gt)['image'] | |
| elif self.mode == 'training': | |
| # -------------------- Do augmentation for training: flip, rotation -------------------- # | |
| if self.opt['use_hflip'] or self.opt['use_rot']: | |
| img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot']) | |
| h, w = img_gt.shape[0:2] | |
| gt_size = self.opt['gt_size'] | |
| # resize or pad | |
| if not self.opt['random_crop']: | |
| if not min(h, w) == gt_size: | |
| if not hasattr(self, 'smallest_resizer'): | |
| self.smallest_resizer = util_image.SmallestMaxSize( | |
| max_size=gt_size, pass_resize=False, | |
| ) | |
| img_gt = self.smallest_resizer(img_gt) | |
| # center crop | |
| if not hasattr(self, 'center_cropper'): | |
| self.center_cropper = albumentations.CenterCrop(gt_size, gt_size) | |
| img_gt = self.center_cropper(image=img_gt)['image'] | |
| else: | |
| img_gt = random_crop(img_gt, self.opt['gt_size']) | |
| else: | |
| raise ValueError(f'Unexpected value {self.mode} for mode parameter') | |
| # ------------------------ Generate kernels (used in the first degradation) ------------------------ # | |
| kernel_size = random.choice(self.kernel_range1) | |
| if np.random.uniform() < self.opt['sinc_prob']: | |
| # this sinc filter setting is for kernels ranging from [7, 21] | |
| if kernel_size < 13: | |
| omega_c = np.random.uniform(np.pi / 3, np.pi) | |
| else: | |
| omega_c = np.random.uniform(np.pi / 5, np.pi) | |
| kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
| else: | |
| kernel = random_mixed_kernels( | |
| self.kernel_list, | |
| self.kernel_prob, | |
| kernel_size, | |
| self.blur_sigma, | |
| self.blur_sigma, [-math.pi, math.pi], | |
| self.betag_range, | |
| self.betap_range, | |
| noise_range=None) | |
| # pad kernel | |
| pad_size = (self.blur_kernel_size - kernel_size) // 2 | |
| kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) | |
| # ------------------------ Generate kernels (used in the second degradation) ------------------------ # | |
| kernel_size = random.choice(self.kernel_range2) | |
| if np.random.uniform() < self.opt['sinc_prob2']: | |
| if kernel_size < 13: | |
| omega_c = np.random.uniform(np.pi / 3, np.pi) | |
| else: | |
| omega_c = np.random.uniform(np.pi / 5, np.pi) | |
| kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
| else: | |
| kernel2 = random_mixed_kernels( | |
| self.kernel_list2, | |
| self.kernel_prob2, | |
| kernel_size, | |
| self.blur_sigma2, | |
| self.blur_sigma2, [-math.pi, math.pi], | |
| self.betag_range2, | |
| self.betap_range2, | |
| noise_range=None) | |
| # pad kernel | |
| pad_size = (self.blur_kernel_size2 - kernel_size) // 2 | |
| kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) | |
| # ------------------------------------- the final sinc kernel ------------------------------------- # | |
| if np.random.uniform() < self.opt['final_sinc_prob']: | |
| kernel_size = random.choice(self.kernel_range2) | |
| omega_c = np.random.uniform(np.pi / 3, np.pi) | |
| sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=self.blur_kernel_size2) | |
| sinc_kernel = torch.FloatTensor(sinc_kernel) | |
| else: | |
| sinc_kernel = self.pulse_tensor | |
| # BGR to RGB, HWC to CHW, numpy to tensor | |
| img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0] | |
| kernel = torch.FloatTensor(kernel) | |
| kernel2 = torch.FloatTensor(kernel2) | |
| if self.text_paths[index] is None or self.opt['random_crop']: | |
| prompt = "" | |
| else: | |
| with open(self.text_paths[index], 'r') as ff: | |
| prompt = ff.read() | |
| if self.opt.max_token_length is not None: | |
| prompt = prompt[:self.opt.max_token_length] | |
| return_d = { | |
| 'gt': img_gt, | |
| 'gt_path': gt_path, | |
| 'txt': prompt, | |
| 'kernel1': kernel, | |
| 'kernel2': kernel2, | |
| 'sinc_kernel': sinc_kernel, | |
| } | |
| if self.moment_paths[index] is not None and (not self.opt['random_crop']): | |
| return_d['gt_moment'] = np.load(self.moment_paths[index]) | |
| return return_d | |
| def __len__(self): | |
| return len(self.image_paths) | |
| def degrade_fun(self, conf_degradation, im_gt, kernel1, kernel2, sinc_kernel): | |
| if not hasattr(self, 'jpeger'): | |
| self.jpeger = DiffJPEG(differentiable=False) # simulate JPEG compression artifacts | |
| ori_h, ori_w = im_gt.size()[2:4] | |
| sf = conf_degradation.sf | |
| # ----------------------- The first degradation process ----------------------- # | |
| # blur | |
| out = filter2D(im_gt, kernel1) | |
| # random resize | |
| updown_type = random.choices( | |
| ['up', 'down', 'keep'], | |
| conf_degradation['resize_prob'], | |
| )[0] | |
| if updown_type == 'up': | |
| scale = random.uniform(1, conf_degradation['resize_range'][1]) | |
| elif updown_type == 'down': | |
| scale = random.uniform(conf_degradation['resize_range'][0], 1) | |
| else: | |
| scale = 1 | |
| mode = random.choice(['area', 'bilinear', 'bicubic']) | |
| out = F.interpolate(out, scale_factor=scale, mode=mode) | |
| # add noise | |
| gray_noise_prob = conf_degradation['gray_noise_prob'] | |
| if random.random() < conf_degradation['gaussian_noise_prob']: | |
| out = random_add_gaussian_noise_pt( | |
| out, | |
| sigma_range=conf_degradation['noise_range'], | |
| clip=True, | |
| rounds=False, | |
| gray_prob=gray_noise_prob, | |
| ) | |
| else: | |
| out = random_add_poisson_noise_pt( | |
| out, | |
| scale_range=conf_degradation['poisson_scale_range'], | |
| gray_prob=gray_noise_prob, | |
| clip=True, | |
| rounds=False) | |
| # JPEG compression | |
| jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range']) | |
| out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts | |
| out = self.jpeger(out, quality=jpeg_p) | |
| # ----------------------- The second degradation process ----------------------- # | |
| # blur | |
| if random.random() < conf_degradation['second_order_prob']: | |
| if random.random() < conf_degradation['second_blur_prob']: | |
| out = filter2D(out, kernel2) | |
| # random resize | |
| updown_type = random.choices( | |
| ['up', 'down', 'keep'], | |
| conf_degradation['resize_prob2'], | |
| )[0] | |
| if updown_type == 'up': | |
| scale = random.uniform(1, conf_degradation['resize_range2'][1]) | |
| elif updown_type == 'down': | |
| scale = random.uniform(conf_degradation['resize_range2'][0], 1) | |
| else: | |
| scale = 1 | |
| mode = random.choice(['area', 'bilinear', 'bicubic']) | |
| out = F.interpolate( | |
| out, | |
| size=(int(ori_h / sf * scale), int(ori_w / sf * scale)), | |
| mode=mode, | |
| ) | |
| # add noise | |
| gray_noise_prob = conf_degradation['gray_noise_prob2'] | |
| if random.random() < conf_degradation['gaussian_noise_prob2']: | |
| out = random_add_gaussian_noise_pt( | |
| out, | |
| sigma_range=conf_degradation['noise_range2'], | |
| clip=True, | |
| rounds=False, | |
| gray_prob=gray_noise_prob, | |
| ) | |
| else: | |
| out = random_add_poisson_noise_pt( | |
| out, | |
| scale_range=conf_degradation['poisson_scale_range2'], | |
| gray_prob=gray_noise_prob, | |
| clip=True, | |
| rounds=False, | |
| ) | |
| # JPEG compression + the final sinc filter | |
| # We also need to resize images to desired sizes. We group [resize back + sinc filter] together | |
| # as one operation. | |
| # We consider two orders: | |
| # 1. [resize back + sinc filter] + JPEG compression | |
| # 2. JPEG compression + [resize back + sinc filter] | |
| # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines. | |
| if random.random() < 0.5: | |
| # resize back + the final sinc filter | |
| mode = random.choice(['area', 'bilinear', 'bicubic']) | |
| out = F.interpolate( | |
| out, | |
| size=(ori_h // sf, ori_w // sf), | |
| mode=mode, | |
| ) | |
| out = filter2D(out, sinc_kernel) | |
| # JPEG compression | |
| jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2']) | |
| out = torch.clamp(out, 0, 1) | |
| out = self.jpeger(out, quality=jpeg_p) | |
| else: | |
| # JPEG compression | |
| jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2']) | |
| out = torch.clamp(out, 0, 1) | |
| out = self.jpeger(out, quality=jpeg_p) | |
| # resize back + the final sinc filter | |
| mode = random.choice(['area', 'bilinear', 'bicubic']) | |
| out = F.interpolate( | |
| out, | |
| size=(ori_h // sf, ori_w // sf), | |
| mode=mode, | |
| ) | |
| out = filter2D(out, sinc_kernel) | |
| # clamp and round | |
| im_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255. | |
| return {'lq':im_lq.contiguous(), 'gt':im_gt} | |