Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 AuraFlow Authors, The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...utils import is_torch_version, logging | |
| from ...utils.torch_utils import maybe_allow_in_graph | |
| from ..attention_processor import ( | |
| Attention, | |
| AttentionProcessor, | |
| AuraFlowAttnProcessor2_0, | |
| FusedAuraFlowAttnProcessor2_0, | |
| ) | |
| from ..embeddings import TimestepEmbedding, Timesteps | |
| from ..modeling_outputs import Transformer2DModelOutput | |
| from ..modeling_utils import ModelMixin | |
| from ..normalization import AdaLayerNormZero, FP32LayerNorm | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Taken from the original aura flow inference code. | |
| def find_multiple(n: int, k: int) -> int: | |
| if n % k == 0: | |
| return n | |
| return n + k - (n % k) | |
| # Aura Flow patch embed doesn't use convs for projections. | |
| # Additionally, it uses learned positional embeddings. | |
| class AuraFlowPatchEmbed(nn.Module): | |
| def __init__( | |
| self, | |
| height=224, | |
| width=224, | |
| patch_size=16, | |
| in_channels=3, | |
| embed_dim=768, | |
| pos_embed_max_size=None, | |
| ): | |
| super().__init__() | |
| self.num_patches = (height // patch_size) * (width // patch_size) | |
| self.pos_embed_max_size = pos_embed_max_size | |
| self.proj = nn.Linear(patch_size * patch_size * in_channels, embed_dim) | |
| self.pos_embed = nn.Parameter(torch.randn(1, pos_embed_max_size, embed_dim) * 0.1) | |
| self.patch_size = patch_size | |
| self.height, self.width = height // patch_size, width // patch_size | |
| self.base_size = height // patch_size | |
| def forward(self, latent): | |
| batch_size, num_channels, height, width = latent.size() | |
| latent = latent.view( | |
| batch_size, | |
| num_channels, | |
| height // self.patch_size, | |
| self.patch_size, | |
| width // self.patch_size, | |
| self.patch_size, | |
| ) | |
| latent = latent.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2) | |
| latent = self.proj(latent) | |
| return latent + self.pos_embed | |
| # Taken from the original Aura flow inference code. | |
| # Our feedforward only has GELU but Aura uses SiLU. | |
| class AuraFlowFeedForward(nn.Module): | |
| def __init__(self, dim, hidden_dim=None) -> None: | |
| super().__init__() | |
| if hidden_dim is None: | |
| hidden_dim = 4 * dim | |
| final_hidden_dim = int(2 * hidden_dim / 3) | |
| final_hidden_dim = find_multiple(final_hidden_dim, 256) | |
| self.linear_1 = nn.Linear(dim, final_hidden_dim, bias=False) | |
| self.linear_2 = nn.Linear(dim, final_hidden_dim, bias=False) | |
| self.out_projection = nn.Linear(final_hidden_dim, dim, bias=False) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = F.silu(self.linear_1(x)) * self.linear_2(x) | |
| x = self.out_projection(x) | |
| return x | |
| class AuraFlowPreFinalBlock(nn.Module): | |
| def __init__(self, embedding_dim: int, conditioning_embedding_dim: int): | |
| super().__init__() | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=False) | |
| def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: | |
| emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) | |
| scale, shift = torch.chunk(emb, 2, dim=1) | |
| x = x * (1 + scale)[:, None, :] + shift[:, None, :] | |
| return x | |
| class AuraFlowSingleTransformerBlock(nn.Module): | |
| """Similar to `AuraFlowJointTransformerBlock` with a single DiT instead of an MMDiT.""" | |
| def __init__(self, dim, num_attention_heads, attention_head_dim): | |
| super().__init__() | |
| self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm") | |
| processor = AuraFlowAttnProcessor2_0() | |
| self.attn = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=None, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| qk_norm="fp32_layer_norm", | |
| out_dim=dim, | |
| bias=False, | |
| out_bias=False, | |
| processor=processor, | |
| ) | |
| self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False) | |
| self.ff = AuraFlowFeedForward(dim, dim * 4) | |
| def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor): | |
| residual = hidden_states | |
| # Norm + Projection. | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
| # Attention. | |
| attn_output = self.attn(hidden_states=norm_hidden_states) | |
| # Process attention outputs for the `hidden_states`. | |
| hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output) | |
| hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| ff_output = self.ff(hidden_states) | |
| hidden_states = gate_mlp.unsqueeze(1) * ff_output | |
| hidden_states = residual + hidden_states | |
| return hidden_states | |
| class AuraFlowJointTransformerBlock(nn.Module): | |
| r""" | |
| Transformer block for Aura Flow. Similar to SD3 MMDiT. Differences (non-exhaustive): | |
| * QK Norm in the attention blocks | |
| * No bias in the attention blocks | |
| * Most LayerNorms are in FP32 | |
| Parameters: | |
| dim (`int`): The number of channels in the input and output. | |
| num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`): The number of channels in each head. | |
| is_last (`bool`): Boolean to determine if this is the last block in the model. | |
| """ | |
| def __init__(self, dim, num_attention_heads, attention_head_dim): | |
| super().__init__() | |
| self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm") | |
| self.norm1_context = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm") | |
| processor = AuraFlowAttnProcessor2_0() | |
| self.attn = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=None, | |
| added_kv_proj_dim=dim, | |
| added_proj_bias=False, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| qk_norm="fp32_layer_norm", | |
| out_dim=dim, | |
| bias=False, | |
| out_bias=False, | |
| processor=processor, | |
| context_pre_only=False, | |
| ) | |
| self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False) | |
| self.ff = AuraFlowFeedForward(dim, dim * 4) | |
| self.norm2_context = FP32LayerNorm(dim, elementwise_affine=False, bias=False) | |
| self.ff_context = AuraFlowFeedForward(dim, dim * 4) | |
| def forward( | |
| self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor | |
| ): | |
| residual = hidden_states | |
| residual_context = encoder_hidden_states | |
| # Norm + Projection. | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
| norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
| encoder_hidden_states, emb=temb | |
| ) | |
| # Attention. | |
| attn_output, context_attn_output = self.attn( | |
| hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states | |
| ) | |
| # Process attention outputs for the `hidden_states`. | |
| hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output) | |
| hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| hidden_states = gate_mlp.unsqueeze(1) * self.ff(hidden_states) | |
| hidden_states = residual + hidden_states | |
| # Process attention outputs for the `encoder_hidden_states`. | |
| encoder_hidden_states = self.norm2_context(residual_context + c_gate_msa.unsqueeze(1) * context_attn_output) | |
| encoder_hidden_states = encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
| encoder_hidden_states = c_gate_mlp.unsqueeze(1) * self.ff_context(encoder_hidden_states) | |
| encoder_hidden_states = residual_context + encoder_hidden_states | |
| return encoder_hidden_states, hidden_states | |
| class AuraFlowTransformer2DModel(ModelMixin, ConfigMixin): | |
| r""" | |
| A 2D Transformer model as introduced in AuraFlow (https://blog.fal.ai/auraflow/). | |
| Parameters: | |
| sample_size (`int`): The width of the latent images. This is fixed during training since | |
| it is used to learn a number of position embeddings. | |
| patch_size (`int`): Patch size to turn the input data into small patches. | |
| in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. | |
| num_mmdit_layers (`int`, *optional*, defaults to 4): The number of layers of MMDiT Transformer blocks to use. | |
| num_single_dit_layers (`int`, *optional*, defaults to 4): | |
| The number of layers of Transformer blocks to use. These blocks use concatenated image and text | |
| representations. | |
| attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
| num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. | |
| joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
| caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. | |
| out_channels (`int`, defaults to 16): Number of output channels. | |
| pos_embed_max_size (`int`, defaults to 4096): Maximum positions to embed from the image latents. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: int = 64, | |
| patch_size: int = 2, | |
| in_channels: int = 4, | |
| num_mmdit_layers: int = 4, | |
| num_single_dit_layers: int = 32, | |
| attention_head_dim: int = 256, | |
| num_attention_heads: int = 12, | |
| joint_attention_dim: int = 2048, | |
| caption_projection_dim: int = 3072, | |
| out_channels: int = 4, | |
| pos_embed_max_size: int = 1024, | |
| ): | |
| super().__init__() | |
| default_out_channels = in_channels | |
| self.out_channels = out_channels if out_channels is not None else default_out_channels | |
| self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
| self.pos_embed = AuraFlowPatchEmbed( | |
| height=self.config.sample_size, | |
| width=self.config.sample_size, | |
| patch_size=self.config.patch_size, | |
| in_channels=self.config.in_channels, | |
| embed_dim=self.inner_dim, | |
| pos_embed_max_size=pos_embed_max_size, | |
| ) | |
| self.context_embedder = nn.Linear( | |
| self.config.joint_attention_dim, self.config.caption_projection_dim, bias=False | |
| ) | |
| self.time_step_embed = Timesteps(num_channels=256, downscale_freq_shift=0, scale=1000, flip_sin_to_cos=True) | |
| self.time_step_proj = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim) | |
| self.joint_transformer_blocks = nn.ModuleList( | |
| [ | |
| AuraFlowJointTransformerBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=self.config.num_attention_heads, | |
| attention_head_dim=self.config.attention_head_dim, | |
| ) | |
| for i in range(self.config.num_mmdit_layers) | |
| ] | |
| ) | |
| self.single_transformer_blocks = nn.ModuleList( | |
| [ | |
| AuraFlowSingleTransformerBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=self.config.num_attention_heads, | |
| attention_head_dim=self.config.attention_head_dim, | |
| ) | |
| for _ in range(self.config.num_single_dit_layers) | |
| ] | |
| ) | |
| self.norm_out = AuraFlowPreFinalBlock(self.inner_dim, self.inner_dim) | |
| self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False) | |
| # https://arxiv.org/abs/2309.16588 | |
| # prevents artifacts in the attention maps | |
| self.register_tokens = nn.Parameter(torch.randn(1, 8, self.inner_dim) * 0.02) | |
| self.gradient_checkpointing = False | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedAuraFlowAttnProcessor2_0 | |
| def fuse_qkv_projections(self): | |
| """ | |
| Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
| are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| self.original_attn_processors = None | |
| for _, attn_processor in self.attn_processors.items(): | |
| if "Added" in str(attn_processor.__class__.__name__): | |
| raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
| self.original_attn_processors = self.attn_processors | |
| for module in self.modules(): | |
| if isinstance(module, Attention): | |
| module.fuse_projections(fuse=True) | |
| self.set_attn_processor(FusedAuraFlowAttnProcessor2_0()) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
| def unfuse_qkv_projections(self): | |
| """Disables the fused QKV projection if enabled. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| if self.original_attn_processors is not None: | |
| self.set_attn_processor(self.original_attn_processors) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| timestep: torch.LongTensor = None, | |
| return_dict: bool = True, | |
| ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
| height, width = hidden_states.shape[-2:] | |
| # Apply patch embedding, timestep embedding, and project the caption embeddings. | |
| hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. | |
| temb = self.time_step_embed(timestep).to(dtype=next(self.parameters()).dtype) | |
| temb = self.time_step_proj(temb) | |
| encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
| encoder_hidden_states = torch.cat( | |
| [self.register_tokens.repeat(encoder_hidden_states.size(0), 1, 1), encoder_hidden_states], dim=1 | |
| ) | |
| # MMDiT blocks. | |
| for index_block, block in enumerate(self.joint_transformer_blocks): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| encoder_hidden_states, hidden_states = block( | |
| hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb | |
| ) | |
| # Single DiT blocks that combine the `hidden_states` (image) and `encoder_hidden_states` (text) | |
| if len(self.single_transformer_blocks) > 0: | |
| encoder_seq_len = encoder_hidden_states.size(1) | |
| combined_hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
| for index_block, block in enumerate(self.single_transformer_blocks): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| combined_hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| combined_hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| combined_hidden_states = block(hidden_states=combined_hidden_states, temb=temb) | |
| hidden_states = combined_hidden_states[:, encoder_seq_len:] | |
| hidden_states = self.norm_out(hidden_states, temb) | |
| hidden_states = self.proj_out(hidden_states) | |
| # unpatchify | |
| patch_size = self.config.patch_size | |
| out_channels = self.config.out_channels | |
| height = height // patch_size | |
| width = width // patch_size | |
| hidden_states = hidden_states.reshape( | |
| shape=(hidden_states.shape[0], height, width, patch_size, patch_size, out_channels) | |
| ) | |
| hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(hidden_states.shape[0], out_channels, height * patch_size, width * patch_size) | |
| ) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |