Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...loaders import UNet2DConditionLoadersMixin | |
| from ...utils import logging | |
| from ..activations import get_activation | |
| from ..attention import Attention, FeedForward | |
| from ..attention_processor import ( | |
| ADDED_KV_ATTENTION_PROCESSORS, | |
| CROSS_ATTENTION_PROCESSORS, | |
| AttentionProcessor, | |
| AttnAddedKVProcessor, | |
| AttnProcessor, | |
| FusedAttnProcessor2_0, | |
| ) | |
| from ..embeddings import TimestepEmbedding, Timesteps | |
| from ..modeling_utils import ModelMixin | |
| from ..transformers.transformer_temporal import TransformerTemporalModel | |
| from .unet_3d_blocks import ( | |
| CrossAttnDownBlock3D, | |
| CrossAttnUpBlock3D, | |
| DownBlock3D, | |
| UNetMidBlock3DCrossAttn, | |
| UpBlock3D, | |
| get_down_block, | |
| get_up_block, | |
| ) | |
| from .unet_3d_condition import UNet3DConditionOutput | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class I2VGenXLTransformerTemporalEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| activation_fn: str = "geglu", | |
| upcast_attention: bool = False, | |
| ff_inner_dim: Optional[int] = None, | |
| dropout: int = 0.0, | |
| ): | |
| super().__init__() | |
| self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=1e-5) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=False, | |
| upcast_attention=upcast_attention, | |
| out_bias=True, | |
| ) | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=False, | |
| inner_dim=ff_inner_dim, | |
| bias=True, | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| ) -> torch.Tensor: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) | |
| hidden_states = attn_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| ff_output = self.ff(hidden_states) | |
| hidden_states = ff_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| return hidden_states | |
| class I2VGenXLUNet(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
| r""" | |
| I2VGenXL UNet. It is a conditional 3D UNet model that takes a noisy sample, conditional state, and a timestep and | |
| returns a sample-shaped output. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
| for all models (such as downloading or saving). | |
| Parameters: | |
| sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
| Height and width of input/output sample. | |
| in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. | |
| out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
| The tuple of downsample blocks to use. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): | |
| The tuple of upsample blocks to use. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
| norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
| If `None`, normalization and activation layers is skipped in post-processing. | |
| cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. | |
| attention_head_dim (`int`, *optional*, defaults to 64): Attention head dim. | |
| num_attention_heads (`int`, *optional*): The number of attention heads. | |
| """ | |
| _supports_gradient_checkpointing = False | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 4, | |
| out_channels: int = 4, | |
| down_block_types: Tuple[str, ...] = ( | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "DownBlock3D", | |
| ), | |
| up_block_types: Tuple[str, ...] = ( | |
| "UpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| ), | |
| block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| norm_num_groups: Optional[int] = 32, | |
| cross_attention_dim: int = 1024, | |
| attention_head_dim: Union[int, Tuple[int]] = 64, | |
| num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | |
| ): | |
| super().__init__() | |
| # When we first integrated the UNet into the library, we didn't have `attention_head_dim`. As a consequence | |
| # of that, we used `num_attention_heads` for arguments that actually denote attention head dimension. This | |
| # is why we ignore `num_attention_heads` and calculate it from `attention_head_dims` below. | |
| # This is still an incorrect way of calculating `num_attention_heads` but we need to stick to it | |
| # without running proper depcrecation cycles for the {down,mid,up} blocks which are a | |
| # part of the public API. | |
| num_attention_heads = attention_head_dim | |
| # Check inputs | |
| if len(down_block_types) != len(up_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
| ) | |
| if len(block_out_channels) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
| ) | |
| # input | |
| self.conv_in = nn.Conv2d(in_channels + in_channels, block_out_channels[0], kernel_size=3, padding=1) | |
| self.transformer_in = TransformerTemporalModel( | |
| num_attention_heads=8, | |
| attention_head_dim=num_attention_heads, | |
| in_channels=block_out_channels[0], | |
| num_layers=1, | |
| norm_num_groups=norm_num_groups, | |
| ) | |
| # image embedding | |
| self.image_latents_proj_in = nn.Sequential( | |
| nn.Conv2d(4, in_channels * 4, 3, padding=1), | |
| nn.SiLU(), | |
| nn.Conv2d(in_channels * 4, in_channels * 4, 3, stride=1, padding=1), | |
| nn.SiLU(), | |
| nn.Conv2d(in_channels * 4, in_channels, 3, stride=1, padding=1), | |
| ) | |
| self.image_latents_temporal_encoder = I2VGenXLTransformerTemporalEncoder( | |
| dim=in_channels, | |
| num_attention_heads=2, | |
| ff_inner_dim=in_channels * 4, | |
| attention_head_dim=in_channels, | |
| activation_fn="gelu", | |
| ) | |
| self.image_latents_context_embedding = nn.Sequential( | |
| nn.Conv2d(4, in_channels * 8, 3, padding=1), | |
| nn.SiLU(), | |
| nn.AdaptiveAvgPool2d((32, 32)), | |
| nn.Conv2d(in_channels * 8, in_channels * 16, 3, stride=2, padding=1), | |
| nn.SiLU(), | |
| nn.Conv2d(in_channels * 16, cross_attention_dim, 3, stride=2, padding=1), | |
| ) | |
| # other embeddings -- time, context, fps, etc. | |
| time_embed_dim = block_out_channels[0] * 4 | |
| self.time_proj = Timesteps(block_out_channels[0], True, 0) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn="silu") | |
| self.context_embedding = nn.Sequential( | |
| nn.Linear(cross_attention_dim, time_embed_dim), | |
| nn.SiLU(), | |
| nn.Linear(time_embed_dim, cross_attention_dim * in_channels), | |
| ) | |
| self.fps_embedding = nn.Sequential( | |
| nn.Linear(timestep_input_dim, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, time_embed_dim) | |
| ) | |
| # blocks | |
| self.down_blocks = nn.ModuleList([]) | |
| self.up_blocks = nn.ModuleList([]) | |
| if isinstance(num_attention_heads, int): | |
| num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=1e-05, | |
| resnet_act_fn="silu", | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads[i], | |
| downsample_padding=1, | |
| dual_cross_attention=False, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| self.mid_block = UNetMidBlock3DCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=time_embed_dim, | |
| resnet_eps=1e-05, | |
| resnet_act_fn="silu", | |
| output_scale_factor=1, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads[-1], | |
| resnet_groups=norm_num_groups, | |
| dual_cross_attention=False, | |
| ) | |
| # count how many layers upsample the images | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| is_final_block = i == len(block_out_channels) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=layers_per_block + 1, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=time_embed_dim, | |
| add_upsample=add_upsample, | |
| resnet_eps=1e-05, | |
| resnet_act_fn="silu", | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=reversed_num_attention_heads[i], | |
| dual_cross_attention=False, | |
| resolution_idx=i, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-05) | |
| self.conv_act = get_activation("silu") | |
| self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
| def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
| """ | |
| Sets the attention processor to use [feed forward | |
| chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
| Parameters: | |
| chunk_size (`int`, *optional*): | |
| The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
| over each tensor of dim=`dim`. | |
| dim (`int`, *optional*, defaults to `0`): | |
| The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
| or dim=1 (sequence length). | |
| """ | |
| if dim not in [0, 1]: | |
| raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
| # By default chunk size is 1 | |
| chunk_size = chunk_size or 1 | |
| def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
| if hasattr(module, "set_chunk_feed_forward"): | |
| module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
| for child in module.children(): | |
| fn_recursive_feed_forward(child, chunk_size, dim) | |
| for module in self.children(): | |
| fn_recursive_feed_forward(module, chunk_size, dim) | |
| # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking | |
| def disable_forward_chunking(self): | |
| def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
| if hasattr(module, "set_chunk_feed_forward"): | |
| module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
| for child in module.children(): | |
| fn_recursive_feed_forward(child, chunk_size, dim) | |
| for module in self.children(): | |
| fn_recursive_feed_forward(module, None, 0) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnAddedKVProcessor() | |
| elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnProcessor() | |
| else: | |
| raise ValueError( | |
| f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
| ) | |
| self.set_attn_processor(processor) | |
| # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel._set_gradient_checkpointing | |
| def _set_gradient_checkpointing(self, module, value: bool = False) -> None: | |
| if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): | |
| module.gradient_checkpointing = value | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu | |
| def enable_freeu(self, s1, s2, b1, b2): | |
| r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. | |
| The suffixes after the scaling factors represent the stage blocks where they are being applied. | |
| Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that | |
| are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | |
| Args: | |
| s1 (`float`): | |
| Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | |
| mitigate the "oversmoothing effect" in the enhanced denoising process. | |
| s2 (`float`): | |
| Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | |
| mitigate the "oversmoothing effect" in the enhanced denoising process. | |
| b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | |
| b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | |
| """ | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| setattr(upsample_block, "s1", s1) | |
| setattr(upsample_block, "s2", s2) | |
| setattr(upsample_block, "b1", b1) | |
| setattr(upsample_block, "b2", b2) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu | |
| def disable_freeu(self): | |
| """Disables the FreeU mechanism.""" | |
| freeu_keys = {"s1", "s2", "b1", "b2"} | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| for k in freeu_keys: | |
| if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: | |
| setattr(upsample_block, k, None) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections | |
| def fuse_qkv_projections(self): | |
| """ | |
| Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
| are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| self.original_attn_processors = None | |
| for _, attn_processor in self.attn_processors.items(): | |
| if "Added" in str(attn_processor.__class__.__name__): | |
| raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
| self.original_attn_processors = self.attn_processors | |
| for module in self.modules(): | |
| if isinstance(module, Attention): | |
| module.fuse_projections(fuse=True) | |
| self.set_attn_processor(FusedAttnProcessor2_0()) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
| def unfuse_qkv_projections(self): | |
| """Disables the fused QKV projection if enabled. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| if self.original_attn_processors is not None: | |
| self.set_attn_processor(self.original_attn_processors) | |
| def forward( | |
| self, | |
| sample: torch.Tensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| fps: torch.Tensor, | |
| image_latents: torch.Tensor, | |
| image_embeddings: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]: | |
| r""" | |
| The [`I2VGenXLUNet`] forward method. | |
| Args: | |
| sample (`torch.Tensor`): | |
| The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`. | |
| timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input. | |
| fps (`torch.Tensor`): Frames per second for the video being generated. Used as a "micro-condition". | |
| image_latents (`torch.Tensor`): Image encodings from the VAE. | |
| image_embeddings (`torch.Tensor`): | |
| Projection embeddings of the conditioning image computed with a vision encoder. | |
| encoder_hidden_states (`torch.Tensor`): | |
| The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] or `tuple`: | |
| If `return_dict` is True, an [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is the sample tensor. | |
| """ | |
| batch_size, channels, num_frames, height, width = sample.shape | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2**self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass `timesteps` as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timesteps, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=self.dtype) | |
| t_emb = self.time_embedding(t_emb, timestep_cond) | |
| # 2. FPS | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| fps = fps.expand(fps.shape[0]) | |
| fps_emb = self.fps_embedding(self.time_proj(fps).to(dtype=self.dtype)) | |
| # 3. time + FPS embeddings. | |
| emb = t_emb + fps_emb | |
| emb = emb.repeat_interleave(repeats=num_frames, dim=0) | |
| # 4. context embeddings. | |
| # The context embeddings consist of both text embeddings from the input prompt | |
| # AND the image embeddings from the input image. For images, both VAE encodings | |
| # and the CLIP image embeddings are incorporated. | |
| # So the final `context_embeddings` becomes the query for cross-attention. | |
| context_emb = sample.new_zeros(batch_size, 0, self.config.cross_attention_dim) | |
| context_emb = torch.cat([context_emb, encoder_hidden_states], dim=1) | |
| image_latents_for_context_embds = image_latents[:, :, :1, :] | |
| image_latents_context_embs = image_latents_for_context_embds.permute(0, 2, 1, 3, 4).reshape( | |
| image_latents_for_context_embds.shape[0] * image_latents_for_context_embds.shape[2], | |
| image_latents_for_context_embds.shape[1], | |
| image_latents_for_context_embds.shape[3], | |
| image_latents_for_context_embds.shape[4], | |
| ) | |
| image_latents_context_embs = self.image_latents_context_embedding(image_latents_context_embs) | |
| _batch_size, _channels, _height, _width = image_latents_context_embs.shape | |
| image_latents_context_embs = image_latents_context_embs.permute(0, 2, 3, 1).reshape( | |
| _batch_size, _height * _width, _channels | |
| ) | |
| context_emb = torch.cat([context_emb, image_latents_context_embs], dim=1) | |
| image_emb = self.context_embedding(image_embeddings) | |
| image_emb = image_emb.view(-1, self.config.in_channels, self.config.cross_attention_dim) | |
| context_emb = torch.cat([context_emb, image_emb], dim=1) | |
| context_emb = context_emb.repeat_interleave(repeats=num_frames, dim=0) | |
| image_latents = image_latents.permute(0, 2, 1, 3, 4).reshape( | |
| image_latents.shape[0] * image_latents.shape[2], | |
| image_latents.shape[1], | |
| image_latents.shape[3], | |
| image_latents.shape[4], | |
| ) | |
| image_latents = self.image_latents_proj_in(image_latents) | |
| image_latents = ( | |
| image_latents[None, :] | |
| .reshape(batch_size, num_frames, channels, height, width) | |
| .permute(0, 3, 4, 1, 2) | |
| .reshape(batch_size * height * width, num_frames, channels) | |
| ) | |
| image_latents = self.image_latents_temporal_encoder(image_latents) | |
| image_latents = image_latents.reshape(batch_size, height, width, num_frames, channels).permute(0, 4, 3, 1, 2) | |
| # 5. pre-process | |
| sample = torch.cat([sample, image_latents], dim=1) | |
| sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:]) | |
| sample = self.conv_in(sample) | |
| sample = self.transformer_in( | |
| sample, | |
| num_frames=num_frames, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # 6. down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=context_emb, | |
| num_frames=num_frames, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) | |
| down_block_res_samples += res_samples | |
| # 7. mid | |
| if self.mid_block is not None: | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=context_emb, | |
| num_frames=num_frames, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| # 8. up | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=context_emb, | |
| upsample_size=upsample_size, | |
| num_frames=num_frames, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| upsample_size=upsample_size, | |
| num_frames=num_frames, | |
| ) | |
| # 9. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| # reshape to (batch, channel, framerate, width, height) | |
| sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4) | |
| if not return_dict: | |
| return (sample,) | |
| return UNet3DConditionOutput(sample=sample) | |