Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| from collections import defaultdict | |
| from contextlib import nullcontext | |
| from pathlib import Path | |
| from typing import Callable, Dict, Union | |
| import safetensors | |
| import torch | |
| import torch.nn.functional as F | |
| from huggingface_hub.utils import validate_hf_hub_args | |
| from torch import nn | |
| from ..models.embeddings import ( | |
| ImageProjection, | |
| IPAdapterFaceIDImageProjection, | |
| IPAdapterFaceIDPlusImageProjection, | |
| IPAdapterFullImageProjection, | |
| IPAdapterPlusImageProjection, | |
| MultiIPAdapterImageProjection, | |
| ) | |
| from ..models.modeling_utils import load_model_dict_into_meta, load_state_dict | |
| from ..utils import ( | |
| USE_PEFT_BACKEND, | |
| _get_model_file, | |
| convert_unet_state_dict_to_peft, | |
| get_adapter_name, | |
| get_peft_kwargs, | |
| is_accelerate_available, | |
| is_peft_version, | |
| is_torch_version, | |
| logging, | |
| ) | |
| from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE, TEXT_ENCODER_NAME, UNET_NAME | |
| from .utils import AttnProcsLayers | |
| if is_accelerate_available(): | |
| from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module | |
| logger = logging.get_logger(__name__) | |
| CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin" | |
| CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors" | |
| class UNet2DConditionLoadersMixin: | |
| """ | |
| Load LoRA layers into a [`UNet2DCondtionModel`]. | |
| """ | |
| text_encoder_name = TEXT_ENCODER_NAME | |
| unet_name = UNET_NAME | |
| def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): | |
| r""" | |
| Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be | |
| defined in | |
| [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py) | |
| and be a `torch.nn.Module` class. Currently supported: LoRA, Custom Diffusion. For LoRA, one must install | |
| `peft`: `pip install -U peft`. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a directory (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| network_alphas (`Dict[str, float]`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the | |
| same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
| link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
| adapter_name (`str`, *optional*, defaults to None): | |
| Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
| `default_{i}` where i is the total number of adapters being loaded. | |
| weight_name (`str`, *optional*, defaults to None): | |
| Name of the serialized state dict file. | |
| Example: | |
| ```py | |
| from diffusers import AutoPipelineForText2Image | |
| import torch | |
| pipeline = AutoPipelineForText2Image.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipeline.unet.load_attn_procs( | |
| "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic" | |
| ) | |
| ``` | |
| """ | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| adapter_name = kwargs.pop("adapter_name", None) | |
| _pipeline = kwargs.pop("_pipeline", None) | |
| network_alphas = kwargs.pop("network_alphas", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| model_file = None | |
| if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| # Let's first try to load .safetensors weights | |
| if (use_safetensors and weight_name is None) or ( | |
| weight_name is not None and weight_name.endswith(".safetensors") | |
| ): | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path_or_dict, | |
| weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = safetensors.torch.load_file(model_file, device="cpu") | |
| except IOError as e: | |
| if not allow_pickle: | |
| raise e | |
| # try loading non-safetensors weights | |
| pass | |
| if model_file is None: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path_or_dict, | |
| weights_name=weight_name or LORA_WEIGHT_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = load_state_dict(model_file) | |
| else: | |
| state_dict = pretrained_model_name_or_path_or_dict | |
| is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys()) | |
| is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) | |
| is_model_cpu_offload = False | |
| is_sequential_cpu_offload = False | |
| if is_custom_diffusion: | |
| attn_processors = self._process_custom_diffusion(state_dict=state_dict) | |
| elif is_lora: | |
| is_model_cpu_offload, is_sequential_cpu_offload = self._process_lora( | |
| state_dict=state_dict, | |
| unet_identifier_key=self.unet_name, | |
| network_alphas=network_alphas, | |
| adapter_name=adapter_name, | |
| _pipeline=_pipeline, | |
| ) | |
| else: | |
| raise ValueError( | |
| f"{model_file} does not seem to be in the correct format expected by Custom Diffusion training." | |
| ) | |
| # <Unsafe code | |
| # We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype | |
| # Now we remove any existing hooks to `_pipeline`. | |
| # For LoRA, the UNet is already offloaded at this stage as it is handled inside `_process_lora`. | |
| if is_custom_diffusion and _pipeline is not None: | |
| is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline=_pipeline) | |
| # only custom diffusion needs to set attn processors | |
| self.set_attn_processor(attn_processors) | |
| self.to(dtype=self.dtype, device=self.device) | |
| # Offload back. | |
| if is_model_cpu_offload: | |
| _pipeline.enable_model_cpu_offload() | |
| elif is_sequential_cpu_offload: | |
| _pipeline.enable_sequential_cpu_offload() | |
| # Unsafe code /> | |
| def _process_custom_diffusion(self, state_dict): | |
| from ..models.attention_processor import CustomDiffusionAttnProcessor | |
| attn_processors = {} | |
| custom_diffusion_grouped_dict = defaultdict(dict) | |
| for key, value in state_dict.items(): | |
| if len(value) == 0: | |
| custom_diffusion_grouped_dict[key] = {} | |
| else: | |
| if "to_out" in key: | |
| attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) | |
| else: | |
| attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:]) | |
| custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value | |
| for key, value_dict in custom_diffusion_grouped_dict.items(): | |
| if len(value_dict) == 0: | |
| attn_processors[key] = CustomDiffusionAttnProcessor( | |
| train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None | |
| ) | |
| else: | |
| cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1] | |
| hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0] | |
| train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False | |
| attn_processors[key] = CustomDiffusionAttnProcessor( | |
| train_kv=True, | |
| train_q_out=train_q_out, | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| attn_processors[key].load_state_dict(value_dict) | |
| return attn_processors | |
| def _process_lora(self, state_dict, unet_identifier_key, network_alphas, adapter_name, _pipeline): | |
| # This method does the following things: | |
| # 1. Filters the `state_dict` with keys matching `unet_identifier_key` when using the non-legacy | |
| # format. For legacy format no filtering is applied. | |
| # 2. Converts the `state_dict` to the `peft` compatible format. | |
| # 3. Creates a `LoraConfig` and then injects the converted `state_dict` into the UNet per the | |
| # `LoraConfig` specs. | |
| # 4. It also reports if the underlying `_pipeline` has any kind of offloading inside of it. | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for this method.") | |
| from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict | |
| keys = list(state_dict.keys()) | |
| unet_keys = [k for k in keys if k.startswith(unet_identifier_key)] | |
| unet_state_dict = { | |
| k.replace(f"{unet_identifier_key}.", ""): v for k, v in state_dict.items() if k in unet_keys | |
| } | |
| if network_alphas is not None: | |
| alpha_keys = [k for k in network_alphas.keys() if k.startswith(unet_identifier_key)] | |
| network_alphas = { | |
| k.replace(f"{unet_identifier_key}.", ""): v for k, v in network_alphas.items() if k in alpha_keys | |
| } | |
| is_model_cpu_offload = False | |
| is_sequential_cpu_offload = False | |
| state_dict_to_be_used = unet_state_dict if len(unet_state_dict) > 0 else state_dict | |
| if len(state_dict_to_be_used) > 0: | |
| if adapter_name in getattr(self, "peft_config", {}): | |
| raise ValueError( | |
| f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name." | |
| ) | |
| state_dict = convert_unet_state_dict_to_peft(state_dict_to_be_used) | |
| if network_alphas is not None: | |
| # The alphas state dict have the same structure as Unet, thus we convert it to peft format using | |
| # `convert_unet_state_dict_to_peft` method. | |
| network_alphas = convert_unet_state_dict_to_peft(network_alphas) | |
| rank = {} | |
| for key, val in state_dict.items(): | |
| if "lora_B" in key: | |
| rank[key] = val.shape[1] | |
| lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True) | |
| if "use_dora" in lora_config_kwargs: | |
| if lora_config_kwargs["use_dora"]: | |
| if is_peft_version("<", "0.9.0"): | |
| raise ValueError( | |
| "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
| ) | |
| else: | |
| if is_peft_version("<", "0.9.0"): | |
| lora_config_kwargs.pop("use_dora") | |
| lora_config = LoraConfig(**lora_config_kwargs) | |
| # adapter_name | |
| if adapter_name is None: | |
| adapter_name = get_adapter_name(self) | |
| # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks | |
| # otherwise loading LoRA weights will lead to an error | |
| is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline) | |
| inject_adapter_in_model(lora_config, self, adapter_name=adapter_name) | |
| incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name) | |
| if incompatible_keys is not None: | |
| # check only for unexpected keys | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| if unexpected_keys: | |
| logger.warning( | |
| f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
| f" {unexpected_keys}. " | |
| ) | |
| return is_model_cpu_offload, is_sequential_cpu_offload | |
| # Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading | |
| def _optionally_disable_offloading(cls, _pipeline): | |
| """ | |
| Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU. | |
| Args: | |
| _pipeline (`DiffusionPipeline`): | |
| The pipeline to disable offloading for. | |
| Returns: | |
| tuple: | |
| A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True. | |
| """ | |
| is_model_cpu_offload = False | |
| is_sequential_cpu_offload = False | |
| if _pipeline is not None and _pipeline.hf_device_map is None: | |
| for _, component in _pipeline.components.items(): | |
| if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"): | |
| if not is_model_cpu_offload: | |
| is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) | |
| if not is_sequential_cpu_offload: | |
| is_sequential_cpu_offload = ( | |
| isinstance(component._hf_hook, AlignDevicesHook) | |
| or hasattr(component._hf_hook, "hooks") | |
| and isinstance(component._hf_hook.hooks[0], AlignDevicesHook) | |
| ) | |
| logger.info( | |
| "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." | |
| ) | |
| remove_hook_from_module(component, recurse=is_sequential_cpu_offload) | |
| return (is_model_cpu_offload, is_sequential_cpu_offload) | |
| def save_attn_procs( | |
| self, | |
| save_directory: Union[str, os.PathLike], | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = True, | |
| **kwargs, | |
| ): | |
| r""" | |
| Save attention processor layers to a directory so that it can be reloaded with the | |
| [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save an attention processor to (will be created if it doesn't exist). | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or with `pickle`. | |
| Example: | |
| ```py | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "CompVis/stable-diffusion-v1-4", | |
| torch_dtype=torch.float16, | |
| ).to("cuda") | |
| pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin") | |
| pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin") | |
| ``` | |
| """ | |
| from ..models.attention_processor import ( | |
| CustomDiffusionAttnProcessor, | |
| CustomDiffusionAttnProcessor2_0, | |
| CustomDiffusionXFormersAttnProcessor, | |
| ) | |
| if os.path.isfile(save_directory): | |
| logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | |
| return | |
| is_custom_diffusion = any( | |
| isinstance( | |
| x, | |
| (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor), | |
| ) | |
| for (_, x) in self.attn_processors.items() | |
| ) | |
| if is_custom_diffusion: | |
| state_dict = self._get_custom_diffusion_state_dict() | |
| if save_function is None and safe_serialization: | |
| # safetensors does not support saving dicts with non-tensor values | |
| empty_state_dict = {k: v for k, v in state_dict.items() if not isinstance(v, torch.Tensor)} | |
| if len(empty_state_dict) > 0: | |
| logger.warning( | |
| f"Safetensors does not support saving dicts with non-tensor values. " | |
| f"The following keys will be ignored: {empty_state_dict.keys()}" | |
| ) | |
| state_dict = {k: v for k, v in state_dict.items() if isinstance(v, torch.Tensor)} | |
| else: | |
| if not USE_PEFT_BACKEND: | |
| raise ValueError("PEFT backend is required for saving LoRAs using the `save_attn_procs()` method.") | |
| from peft.utils import get_peft_model_state_dict | |
| state_dict = get_peft_model_state_dict(self) | |
| if save_function is None: | |
| if safe_serialization: | |
| def save_function(weights, filename): | |
| return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) | |
| else: | |
| save_function = torch.save | |
| os.makedirs(save_directory, exist_ok=True) | |
| if weight_name is None: | |
| if safe_serialization: | |
| weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE | |
| else: | |
| weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME | |
| # Save the model | |
| save_path = Path(save_directory, weight_name).as_posix() | |
| save_function(state_dict, save_path) | |
| logger.info(f"Model weights saved in {save_path}") | |
| def _get_custom_diffusion_state_dict(self): | |
| from ..models.attention_processor import ( | |
| CustomDiffusionAttnProcessor, | |
| CustomDiffusionAttnProcessor2_0, | |
| CustomDiffusionXFormersAttnProcessor, | |
| ) | |
| model_to_save = AttnProcsLayers( | |
| { | |
| y: x | |
| for (y, x) in self.attn_processors.items() | |
| if isinstance( | |
| x, | |
| ( | |
| CustomDiffusionAttnProcessor, | |
| CustomDiffusionAttnProcessor2_0, | |
| CustomDiffusionXFormersAttnProcessor, | |
| ), | |
| ) | |
| } | |
| ) | |
| state_dict = model_to_save.state_dict() | |
| for name, attn in self.attn_processors.items(): | |
| if len(attn.state_dict()) == 0: | |
| state_dict[name] = {} | |
| return state_dict | |
| def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False): | |
| if low_cpu_mem_usage: | |
| if is_accelerate_available(): | |
| from accelerate import init_empty_weights | |
| else: | |
| low_cpu_mem_usage = False | |
| logger.warning( | |
| "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
| " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
| " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
| " install accelerate\n```\n." | |
| ) | |
| if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `low_cpu_mem_usage=False`." | |
| ) | |
| updated_state_dict = {} | |
| image_projection = None | |
| init_context = init_empty_weights if low_cpu_mem_usage else nullcontext | |
| if "proj.weight" in state_dict: | |
| # IP-Adapter | |
| num_image_text_embeds = 4 | |
| clip_embeddings_dim = state_dict["proj.weight"].shape[-1] | |
| cross_attention_dim = state_dict["proj.weight"].shape[0] // 4 | |
| with init_context(): | |
| image_projection = ImageProjection( | |
| cross_attention_dim=cross_attention_dim, | |
| image_embed_dim=clip_embeddings_dim, | |
| num_image_text_embeds=num_image_text_embeds, | |
| ) | |
| for key, value in state_dict.items(): | |
| diffusers_name = key.replace("proj", "image_embeds") | |
| updated_state_dict[diffusers_name] = value | |
| elif "proj.3.weight" in state_dict: | |
| # IP-Adapter Full | |
| clip_embeddings_dim = state_dict["proj.0.weight"].shape[0] | |
| cross_attention_dim = state_dict["proj.3.weight"].shape[0] | |
| with init_context(): | |
| image_projection = IPAdapterFullImageProjection( | |
| cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim | |
| ) | |
| for key, value in state_dict.items(): | |
| diffusers_name = key.replace("proj.0", "ff.net.0.proj") | |
| diffusers_name = diffusers_name.replace("proj.2", "ff.net.2") | |
| diffusers_name = diffusers_name.replace("proj.3", "norm") | |
| updated_state_dict[diffusers_name] = value | |
| elif "perceiver_resampler.proj_in.weight" in state_dict: | |
| # IP-Adapter Face ID Plus | |
| id_embeddings_dim = state_dict["proj.0.weight"].shape[1] | |
| embed_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[0] | |
| hidden_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[1] | |
| output_dims = state_dict["perceiver_resampler.proj_out.weight"].shape[0] | |
| heads = state_dict["perceiver_resampler.layers.0.0.to_q.weight"].shape[0] // 64 | |
| with init_context(): | |
| image_projection = IPAdapterFaceIDPlusImageProjection( | |
| embed_dims=embed_dims, | |
| output_dims=output_dims, | |
| hidden_dims=hidden_dims, | |
| heads=heads, | |
| id_embeddings_dim=id_embeddings_dim, | |
| ) | |
| for key, value in state_dict.items(): | |
| diffusers_name = key.replace("perceiver_resampler.", "") | |
| diffusers_name = diffusers_name.replace("0.to", "attn.to") | |
| diffusers_name = diffusers_name.replace("0.1.0.", "0.ff.0.") | |
| diffusers_name = diffusers_name.replace("0.1.1.weight", "0.ff.1.net.0.proj.weight") | |
| diffusers_name = diffusers_name.replace("0.1.3.weight", "0.ff.1.net.2.weight") | |
| diffusers_name = diffusers_name.replace("1.1.0.", "1.ff.0.") | |
| diffusers_name = diffusers_name.replace("1.1.1.weight", "1.ff.1.net.0.proj.weight") | |
| diffusers_name = diffusers_name.replace("1.1.3.weight", "1.ff.1.net.2.weight") | |
| diffusers_name = diffusers_name.replace("2.1.0.", "2.ff.0.") | |
| diffusers_name = diffusers_name.replace("2.1.1.weight", "2.ff.1.net.0.proj.weight") | |
| diffusers_name = diffusers_name.replace("2.1.3.weight", "2.ff.1.net.2.weight") | |
| diffusers_name = diffusers_name.replace("3.1.0.", "3.ff.0.") | |
| diffusers_name = diffusers_name.replace("3.1.1.weight", "3.ff.1.net.0.proj.weight") | |
| diffusers_name = diffusers_name.replace("3.1.3.weight", "3.ff.1.net.2.weight") | |
| diffusers_name = diffusers_name.replace("layers.0.0", "layers.0.ln0") | |
| diffusers_name = diffusers_name.replace("layers.0.1", "layers.0.ln1") | |
| diffusers_name = diffusers_name.replace("layers.1.0", "layers.1.ln0") | |
| diffusers_name = diffusers_name.replace("layers.1.1", "layers.1.ln1") | |
| diffusers_name = diffusers_name.replace("layers.2.0", "layers.2.ln0") | |
| diffusers_name = diffusers_name.replace("layers.2.1", "layers.2.ln1") | |
| diffusers_name = diffusers_name.replace("layers.3.0", "layers.3.ln0") | |
| diffusers_name = diffusers_name.replace("layers.3.1", "layers.3.ln1") | |
| if "norm1" in diffusers_name: | |
| updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value | |
| elif "norm2" in diffusers_name: | |
| updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value | |
| elif "to_kv" in diffusers_name: | |
| v_chunk = value.chunk(2, dim=0) | |
| updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0] | |
| updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1] | |
| elif "to_out" in diffusers_name: | |
| updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value | |
| elif "proj.0.weight" == diffusers_name: | |
| updated_state_dict["proj.net.0.proj.weight"] = value | |
| elif "proj.0.bias" == diffusers_name: | |
| updated_state_dict["proj.net.0.proj.bias"] = value | |
| elif "proj.2.weight" == diffusers_name: | |
| updated_state_dict["proj.net.2.weight"] = value | |
| elif "proj.2.bias" == diffusers_name: | |
| updated_state_dict["proj.net.2.bias"] = value | |
| else: | |
| updated_state_dict[diffusers_name] = value | |
| elif "norm.weight" in state_dict: | |
| # IP-Adapter Face ID | |
| id_embeddings_dim_in = state_dict["proj.0.weight"].shape[1] | |
| id_embeddings_dim_out = state_dict["proj.0.weight"].shape[0] | |
| multiplier = id_embeddings_dim_out // id_embeddings_dim_in | |
| norm_layer = "norm.weight" | |
| cross_attention_dim = state_dict[norm_layer].shape[0] | |
| num_tokens = state_dict["proj.2.weight"].shape[0] // cross_attention_dim | |
| with init_context(): | |
| image_projection = IPAdapterFaceIDImageProjection( | |
| cross_attention_dim=cross_attention_dim, | |
| image_embed_dim=id_embeddings_dim_in, | |
| mult=multiplier, | |
| num_tokens=num_tokens, | |
| ) | |
| for key, value in state_dict.items(): | |
| diffusers_name = key.replace("proj.0", "ff.net.0.proj") | |
| diffusers_name = diffusers_name.replace("proj.2", "ff.net.2") | |
| updated_state_dict[diffusers_name] = value | |
| else: | |
| # IP-Adapter Plus | |
| num_image_text_embeds = state_dict["latents"].shape[1] | |
| embed_dims = state_dict["proj_in.weight"].shape[1] | |
| output_dims = state_dict["proj_out.weight"].shape[0] | |
| hidden_dims = state_dict["latents"].shape[2] | |
| attn_key_present = any("attn" in k for k in state_dict) | |
| heads = ( | |
| state_dict["layers.0.attn.to_q.weight"].shape[0] // 64 | |
| if attn_key_present | |
| else state_dict["layers.0.0.to_q.weight"].shape[0] // 64 | |
| ) | |
| with init_context(): | |
| image_projection = IPAdapterPlusImageProjection( | |
| embed_dims=embed_dims, | |
| output_dims=output_dims, | |
| hidden_dims=hidden_dims, | |
| heads=heads, | |
| num_queries=num_image_text_embeds, | |
| ) | |
| for key, value in state_dict.items(): | |
| diffusers_name = key.replace("0.to", "2.to") | |
| diffusers_name = diffusers_name.replace("0.0.norm1", "0.ln0") | |
| diffusers_name = diffusers_name.replace("0.0.norm2", "0.ln1") | |
| diffusers_name = diffusers_name.replace("1.0.norm1", "1.ln0") | |
| diffusers_name = diffusers_name.replace("1.0.norm2", "1.ln1") | |
| diffusers_name = diffusers_name.replace("2.0.norm1", "2.ln0") | |
| diffusers_name = diffusers_name.replace("2.0.norm2", "2.ln1") | |
| diffusers_name = diffusers_name.replace("3.0.norm1", "3.ln0") | |
| diffusers_name = diffusers_name.replace("3.0.norm2", "3.ln1") | |
| if "to_kv" in diffusers_name: | |
| parts = diffusers_name.split(".") | |
| parts[2] = "attn" | |
| diffusers_name = ".".join(parts) | |
| v_chunk = value.chunk(2, dim=0) | |
| updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0] | |
| updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1] | |
| elif "to_q" in diffusers_name: | |
| parts = diffusers_name.split(".") | |
| parts[2] = "attn" | |
| diffusers_name = ".".join(parts) | |
| updated_state_dict[diffusers_name] = value | |
| elif "to_out" in diffusers_name: | |
| parts = diffusers_name.split(".") | |
| parts[2] = "attn" | |
| diffusers_name = ".".join(parts) | |
| updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value | |
| else: | |
| diffusers_name = diffusers_name.replace("0.1.0", "0.ff.0") | |
| diffusers_name = diffusers_name.replace("0.1.1", "0.ff.1.net.0.proj") | |
| diffusers_name = diffusers_name.replace("0.1.3", "0.ff.1.net.2") | |
| diffusers_name = diffusers_name.replace("1.1.0", "1.ff.0") | |
| diffusers_name = diffusers_name.replace("1.1.1", "1.ff.1.net.0.proj") | |
| diffusers_name = diffusers_name.replace("1.1.3", "1.ff.1.net.2") | |
| diffusers_name = diffusers_name.replace("2.1.0", "2.ff.0") | |
| diffusers_name = diffusers_name.replace("2.1.1", "2.ff.1.net.0.proj") | |
| diffusers_name = diffusers_name.replace("2.1.3", "2.ff.1.net.2") | |
| diffusers_name = diffusers_name.replace("3.1.0", "3.ff.0") | |
| diffusers_name = diffusers_name.replace("3.1.1", "3.ff.1.net.0.proj") | |
| diffusers_name = diffusers_name.replace("3.1.3", "3.ff.1.net.2") | |
| updated_state_dict[diffusers_name] = value | |
| if not low_cpu_mem_usage: | |
| image_projection.load_state_dict(updated_state_dict, strict=True) | |
| else: | |
| load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype) | |
| return image_projection | |
| def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False): | |
| from ..models.attention_processor import ( | |
| IPAdapterAttnProcessor, | |
| IPAdapterAttnProcessor2_0, | |
| ) | |
| if low_cpu_mem_usage: | |
| if is_accelerate_available(): | |
| from accelerate import init_empty_weights | |
| else: | |
| low_cpu_mem_usage = False | |
| logger.warning( | |
| "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
| " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
| " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
| " install accelerate\n```\n." | |
| ) | |
| if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `low_cpu_mem_usage=False`." | |
| ) | |
| # set ip-adapter cross-attention processors & load state_dict | |
| attn_procs = {} | |
| key_id = 1 | |
| init_context = init_empty_weights if low_cpu_mem_usage else nullcontext | |
| for name in self.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = self.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(self.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = self.config.block_out_channels[block_id] | |
| if cross_attention_dim is None or "motion_modules" in name: | |
| attn_processor_class = self.attn_processors[name].__class__ | |
| attn_procs[name] = attn_processor_class() | |
| else: | |
| attn_processor_class = ( | |
| IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor | |
| ) | |
| num_image_text_embeds = [] | |
| for state_dict in state_dicts: | |
| if "proj.weight" in state_dict["image_proj"]: | |
| # IP-Adapter | |
| num_image_text_embeds += [4] | |
| elif "proj.3.weight" in state_dict["image_proj"]: | |
| # IP-Adapter Full Face | |
| num_image_text_embeds += [257] # 256 CLIP tokens + 1 CLS token | |
| elif "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]: | |
| # IP-Adapter Face ID Plus | |
| num_image_text_embeds += [4] | |
| elif "norm.weight" in state_dict["image_proj"]: | |
| # IP-Adapter Face ID | |
| num_image_text_embeds += [4] | |
| else: | |
| # IP-Adapter Plus | |
| num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]] | |
| with init_context(): | |
| attn_procs[name] = attn_processor_class( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| scale=1.0, | |
| num_tokens=num_image_text_embeds, | |
| ) | |
| value_dict = {} | |
| for i, state_dict in enumerate(state_dicts): | |
| value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]}) | |
| value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]}) | |
| if not low_cpu_mem_usage: | |
| attn_procs[name].load_state_dict(value_dict) | |
| else: | |
| device = next(iter(value_dict.values())).device | |
| dtype = next(iter(value_dict.values())).dtype | |
| load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype) | |
| key_id += 2 | |
| return attn_procs | |
| def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False): | |
| if not isinstance(state_dicts, list): | |
| state_dicts = [state_dicts] | |
| # Kolors Unet already has a `encoder_hid_proj` | |
| if ( | |
| self.encoder_hid_proj is not None | |
| and self.config.encoder_hid_dim_type == "text_proj" | |
| and not hasattr(self, "text_encoder_hid_proj") | |
| ): | |
| self.text_encoder_hid_proj = self.encoder_hid_proj | |
| # Set encoder_hid_proj after loading ip_adapter weights, | |
| # because `IPAdapterPlusImageProjection` also has `attn_processors`. | |
| self.encoder_hid_proj = None | |
| attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) | |
| self.set_attn_processor(attn_procs) | |
| # convert IP-Adapter Image Projection layers to diffusers | |
| image_projection_layers = [] | |
| for state_dict in state_dicts: | |
| image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers( | |
| state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage | |
| ) | |
| image_projection_layers.append(image_projection_layer) | |
| self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) | |
| self.config.encoder_hid_dim_type = "ip_image_proj" | |
| self.to(dtype=self.dtype, device=self.device) | |
| def _load_ip_adapter_loras(self, state_dicts): | |
| lora_dicts = {} | |
| for key_id, name in enumerate(self.attn_processors.keys()): | |
| for i, state_dict in enumerate(state_dicts): | |
| if f"{key_id}.to_k_lora.down.weight" in state_dict["ip_adapter"]: | |
| if i not in lora_dicts: | |
| lora_dicts[i] = {} | |
| lora_dicts[i].update( | |
| { | |
| f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][ | |
| f"{key_id}.to_k_lora.down.weight" | |
| ] | |
| } | |
| ) | |
| lora_dicts[i].update( | |
| { | |
| f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][ | |
| f"{key_id}.to_q_lora.down.weight" | |
| ] | |
| } | |
| ) | |
| lora_dicts[i].update( | |
| { | |
| f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][ | |
| f"{key_id}.to_v_lora.down.weight" | |
| ] | |
| } | |
| ) | |
| lora_dicts[i].update( | |
| { | |
| f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][ | |
| f"{key_id}.to_out_lora.down.weight" | |
| ] | |
| } | |
| ) | |
| lora_dicts[i].update( | |
| {f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]} | |
| ) | |
| lora_dicts[i].update( | |
| {f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]} | |
| ) | |
| lora_dicts[i].update( | |
| {f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]} | |
| ) | |
| lora_dicts[i].update( | |
| { | |
| f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][ | |
| f"{key_id}.to_out_lora.up.weight" | |
| ] | |
| } | |
| ) | |
| return lora_dicts | |