Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...utils import is_torch_version, logging | |
| from ..attention import BasicTransformerBlock | |
| from ..embeddings import PatchEmbed | |
| from ..modeling_outputs import Transformer2DModelOutput | |
| from ..modeling_utils import ModelMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class DiTTransformer2DModel(ModelMixin, ConfigMixin): | |
| r""" | |
| A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748). | |
| Parameters: | |
| num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention. | |
| attention_head_dim (int, optional, defaults to 72): The number of channels in each head. | |
| in_channels (int, defaults to 4): The number of channels in the input. | |
| out_channels (int, optional): | |
| The number of channels in the output. Specify this parameter if the output channel number differs from the | |
| input. | |
| num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use. | |
| dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks. | |
| norm_num_groups (int, optional, defaults to 32): | |
| Number of groups for group normalization within Transformer blocks. | |
| attention_bias (bool, optional, defaults to True): | |
| Configure if the Transformer blocks' attention should contain a bias parameter. | |
| sample_size (int, defaults to 32): | |
| The width of the latent images. This parameter is fixed during training. | |
| patch_size (int, defaults to 2): | |
| Size of the patches the model processes, relevant for architectures working on non-sequential data. | |
| activation_fn (str, optional, defaults to "gelu-approximate"): | |
| Activation function to use in feed-forward networks within Transformer blocks. | |
| num_embeds_ada_norm (int, optional, defaults to 1000): | |
| Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during | |
| inference. | |
| upcast_attention (bool, optional, defaults to False): | |
| If true, upcasts the attention mechanism dimensions for potentially improved performance. | |
| norm_type (str, optional, defaults to "ada_norm_zero"): | |
| Specifies the type of normalization used, can be 'ada_norm_zero'. | |
| norm_elementwise_affine (bool, optional, defaults to False): | |
| If true, enables element-wise affine parameters in the normalization layers. | |
| norm_eps (float, optional, defaults to 1e-5): | |
| A small constant added to the denominator in normalization layers to prevent division by zero. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 72, | |
| in_channels: int = 4, | |
| out_channels: Optional[int] = None, | |
| num_layers: int = 28, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| attention_bias: bool = True, | |
| sample_size: int = 32, | |
| patch_size: int = 2, | |
| activation_fn: str = "gelu-approximate", | |
| num_embeds_ada_norm: Optional[int] = 1000, | |
| upcast_attention: bool = False, | |
| norm_type: str = "ada_norm_zero", | |
| norm_elementwise_affine: bool = False, | |
| norm_eps: float = 1e-5, | |
| ): | |
| super().__init__() | |
| # Validate inputs. | |
| if norm_type != "ada_norm_zero": | |
| raise NotImplementedError( | |
| f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." | |
| ) | |
| elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None: | |
| raise ValueError( | |
| f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." | |
| ) | |
| # Set some common variables used across the board. | |
| self.attention_head_dim = attention_head_dim | |
| self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
| self.out_channels = in_channels if out_channels is None else out_channels | |
| self.gradient_checkpointing = False | |
| # 2. Initialize the position embedding and transformer blocks. | |
| self.height = self.config.sample_size | |
| self.width = self.config.sample_size | |
| self.patch_size = self.config.patch_size | |
| self.pos_embed = PatchEmbed( | |
| height=self.config.sample_size, | |
| width=self.config.sample_size, | |
| patch_size=self.config.patch_size, | |
| in_channels=self.config.in_channels, | |
| embed_dim=self.inner_dim, | |
| ) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| self.inner_dim, | |
| self.config.num_attention_heads, | |
| self.config.attention_head_dim, | |
| dropout=self.config.dropout, | |
| activation_fn=self.config.activation_fn, | |
| num_embeds_ada_norm=self.config.num_embeds_ada_norm, | |
| attention_bias=self.config.attention_bias, | |
| upcast_attention=self.config.upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=self.config.norm_elementwise_affine, | |
| norm_eps=self.config.norm_eps, | |
| ) | |
| for _ in range(self.config.num_layers) | |
| ] | |
| ) | |
| # 3. Output blocks. | |
| self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) | |
| self.proj_out_2 = nn.Linear( | |
| self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels | |
| ) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| timestep: Optional[torch.LongTensor] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| The [`DiTTransformer2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
| Input `hidden_states`. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
| class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
| Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
| `AdaLayerZeroNorm`. | |
| cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| # 1. Input | |
| height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
| hidden_states = self.pos_embed(hidden_states) | |
| # 2. Blocks | |
| for block in self.transformer_blocks: | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| None, | |
| None, | |
| None, | |
| timestep, | |
| cross_attention_kwargs, | |
| class_labels, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states = block( | |
| hidden_states, | |
| attention_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| timestep=timestep, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| class_labels=class_labels, | |
| ) | |
| # 3. Output | |
| conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype) | |
| shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
| hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
| hidden_states = self.proj_out_2(hidden_states) | |
| # unpatchify | |
| height = width = int(hidden_states.shape[1] ** 0.5) | |
| hidden_states = hidden_states.reshape( | |
| shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) | |
| ) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |