Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional | |
| import torch | |
| import torch.nn as nn | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...utils import logging | |
| from ..attention import LuminaFeedForward | |
| from ..attention_processor import Attention, LuminaAttnProcessor2_0 | |
| from ..embeddings import ( | |
| LuminaCombinedTimestepCaptionEmbedding, | |
| LuminaPatchEmbed, | |
| ) | |
| from ..modeling_outputs import Transformer2DModelOutput | |
| from ..modeling_utils import ModelMixin | |
| from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class LuminaNextDiTBlock(nn.Module): | |
| """ | |
| A LuminaNextDiTBlock for LuminaNextDiT2DModel. | |
| Parameters: | |
| dim (`int`): Embedding dimension of the input features. | |
| num_attention_heads (`int`): Number of attention heads. | |
| num_kv_heads (`int`): | |
| Number of attention heads in key and value features (if using GQA), or set to None for the same as query. | |
| multiple_of (`int`): The number of multiple of ffn layer. | |
| ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension. | |
| norm_eps (`float`): The eps for norm layer. | |
| qk_norm (`bool`): normalization for query and key. | |
| cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states. | |
| norm_elementwise_affine (`bool`, *optional*, defaults to True), | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| num_kv_heads: int, | |
| multiple_of: int, | |
| ffn_dim_multiplier: float, | |
| norm_eps: float, | |
| qk_norm: bool, | |
| cross_attention_dim: int, | |
| norm_elementwise_affine: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| self.head_dim = dim // num_attention_heads | |
| self.gate = nn.Parameter(torch.zeros([num_attention_heads])) | |
| # Self-attention | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=None, | |
| dim_head=dim // num_attention_heads, | |
| qk_norm="layer_norm_across_heads" if qk_norm else None, | |
| heads=num_attention_heads, | |
| kv_heads=num_kv_heads, | |
| eps=1e-5, | |
| bias=False, | |
| out_bias=False, | |
| processor=LuminaAttnProcessor2_0(), | |
| ) | |
| self.attn1.to_out = nn.Identity() | |
| # Cross-attention | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| dim_head=dim // num_attention_heads, | |
| qk_norm="layer_norm_across_heads" if qk_norm else None, | |
| heads=num_attention_heads, | |
| kv_heads=num_kv_heads, | |
| eps=1e-5, | |
| bias=False, | |
| out_bias=False, | |
| processor=LuminaAttnProcessor2_0(), | |
| ) | |
| self.feed_forward = LuminaFeedForward( | |
| dim=dim, | |
| inner_dim=4 * dim, | |
| multiple_of=multiple_of, | |
| ffn_dim_multiplier=ffn_dim_multiplier, | |
| ) | |
| self.norm1 = LuminaRMSNormZero( | |
| embedding_dim=dim, | |
| norm_eps=norm_eps, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| ) | |
| self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) | |
| self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) | |
| self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) | |
| self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| image_rotary_emb: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| encoder_mask: torch.Tensor, | |
| temb: torch.Tensor, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| ): | |
| """ | |
| Perform a forward pass through the LuminaNextDiTBlock. | |
| Parameters: | |
| hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock. | |
| attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask. | |
| image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies. | |
| encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder. | |
| encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask. | |
| temb (`torch.Tensor`): Timestep embedding with text prompt embedding. | |
| cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention. | |
| """ | |
| residual = hidden_states | |
| # Self-attention | |
| norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) | |
| self_attn_output = self.attn1( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_hidden_states, | |
| attention_mask=attention_mask, | |
| query_rotary_emb=image_rotary_emb, | |
| key_rotary_emb=image_rotary_emb, | |
| **cross_attention_kwargs, | |
| ) | |
| # Cross-attention | |
| norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) | |
| cross_attn_output = self.attn2( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_encoder_hidden_states, | |
| attention_mask=encoder_mask, | |
| query_rotary_emb=image_rotary_emb, | |
| key_rotary_emb=None, | |
| **cross_attention_kwargs, | |
| ) | |
| cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1) | |
| mixed_attn_output = self_attn_output + cross_attn_output | |
| mixed_attn_output = mixed_attn_output.flatten(-2) | |
| # linear proj | |
| hidden_states = self.attn2.to_out[0](mixed_attn_output) | |
| hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states) | |
| mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) | |
| hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) | |
| return hidden_states | |
| class LuminaNextDiT2DModel(ModelMixin, ConfigMixin): | |
| """ | |
| LuminaNextDiT: Diffusion model with a Transformer backbone. | |
| Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. | |
| Parameters: | |
| sample_size (`int`): The width of the latent images. This is fixed during training since | |
| it is used to learn a number of position embeddings. | |
| patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2): | |
| The size of each patch in the image. This parameter defines the resolution of patches fed into the model. | |
| in_channels (`int`, *optional*, defaults to 4): | |
| The number of input channels for the model. Typically, this matches the number of channels in the input | |
| images. | |
| hidden_size (`int`, *optional*, defaults to 4096): | |
| The dimensionality of the hidden layers in the model. This parameter determines the width of the model's | |
| hidden representations. | |
| num_layers (`int`, *optional*, default to 32): | |
| The number of layers in the model. This defines the depth of the neural network. | |
| num_attention_heads (`int`, *optional*, defaults to 32): | |
| The number of attention heads in each attention layer. This parameter specifies how many separate attention | |
| mechanisms are used. | |
| num_kv_heads (`int`, *optional*, defaults to 8): | |
| The number of key-value heads in the attention mechanism, if different from the number of attention heads. | |
| If None, it defaults to num_attention_heads. | |
| multiple_of (`int`, *optional*, defaults to 256): | |
| A factor that the hidden size should be a multiple of. This can help optimize certain hardware | |
| configurations. | |
| ffn_dim_multiplier (`float`, *optional*): | |
| A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on | |
| the model configuration. | |
| norm_eps (`float`, *optional*, defaults to 1e-5): | |
| A small value added to the denominator for numerical stability in normalization layers. | |
| learn_sigma (`bool`, *optional*, defaults to True): | |
| Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in | |
| predictions. | |
| qk_norm (`bool`, *optional*, defaults to True): | |
| Indicates if the queries and keys in the attention mechanism should be normalized. | |
| cross_attention_dim (`int`, *optional*, defaults to 2048): | |
| The dimensionality of the text embeddings. This parameter defines the size of the text representations used | |
| in the model. | |
| scaling_factor (`float`, *optional*, defaults to 1.0): | |
| A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the | |
| overall scale of the model's operations. | |
| """ | |
| def __init__( | |
| self, | |
| sample_size: int = 128, | |
| patch_size: Optional[int] = 2, | |
| in_channels: Optional[int] = 4, | |
| hidden_size: Optional[int] = 2304, | |
| num_layers: Optional[int] = 32, | |
| num_attention_heads: Optional[int] = 32, | |
| num_kv_heads: Optional[int] = None, | |
| multiple_of: Optional[int] = 256, | |
| ffn_dim_multiplier: Optional[float] = None, | |
| norm_eps: Optional[float] = 1e-5, | |
| learn_sigma: Optional[bool] = True, | |
| qk_norm: Optional[bool] = True, | |
| cross_attention_dim: Optional[int] = 2048, | |
| scaling_factor: Optional[float] = 1.0, | |
| ) -> None: | |
| super().__init__() | |
| self.sample_size = sample_size | |
| self.patch_size = patch_size | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels * 2 if learn_sigma else in_channels | |
| self.hidden_size = hidden_size | |
| self.num_attention_heads = num_attention_heads | |
| self.head_dim = hidden_size // num_attention_heads | |
| self.scaling_factor = scaling_factor | |
| self.patch_embedder = LuminaPatchEmbed( | |
| patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True | |
| ) | |
| self.pad_token = nn.Parameter(torch.empty(hidden_size)) | |
| self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding( | |
| hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim | |
| ) | |
| self.layers = nn.ModuleList( | |
| [ | |
| LuminaNextDiTBlock( | |
| hidden_size, | |
| num_attention_heads, | |
| num_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| qk_norm, | |
| cross_attention_dim, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| self.norm_out = LuminaLayerNormContinuous( | |
| embedding_dim=hidden_size, | |
| conditioning_embedding_dim=min(hidden_size, 1024), | |
| elementwise_affine=False, | |
| eps=1e-6, | |
| bias=True, | |
| out_dim=patch_size * patch_size * self.out_channels, | |
| ) | |
| # self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels) | |
| assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4" | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| timestep: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| encoder_mask: torch.Tensor, | |
| image_rotary_emb: torch.Tensor, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| return_dict=True, | |
| ) -> torch.Tensor: | |
| """ | |
| Forward pass of LuminaNextDiT. | |
| Parameters: | |
| hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W). | |
| timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,). | |
| encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D). | |
| encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L). | |
| """ | |
| hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb) | |
| image_rotary_emb = image_rotary_emb.to(hidden_states.device) | |
| temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask) | |
| encoder_mask = encoder_mask.bool() | |
| for layer in self.layers: | |
| hidden_states = layer( | |
| hidden_states, | |
| mask, | |
| image_rotary_emb, | |
| encoder_hidden_states, | |
| encoder_mask, | |
| temb=temb, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| hidden_states = self.norm_out(hidden_states, temb) | |
| # unpatchify | |
| height_tokens = width_tokens = self.patch_size | |
| height, width = img_size[0] | |
| batch_size = hidden_states.size(0) | |
| sequence_length = (height // height_tokens) * (width // width_tokens) | |
| hidden_states = hidden_states[:, :sequence_length].view( | |
| batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels | |
| ) | |
| output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |