Spaces:
Runtime error
Runtime error
| # Copyright 2022 The OFA-Sys Team. | |
| # This source code is licensed under the Apache 2.0 license | |
| # found in the LICENSE file in the root directory. | |
| # Copyright 2022 The HuggingFace Inc. team. | |
| # All rights reserved. | |
| # This source code is licensed under the Apache 2.0 license | |
| # found in the LICENSE file in the root directory. | |
| import inspect | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| import os | |
| from transformers import CLIPFeatureExtractor, CLIPTokenizer | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler | |
| from diffusers.utils import deprecate, logging | |
| from diffusers import OnnxRuntimeModel | |
| from diffusers import OnnxStableDiffusionPipeline, DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from openvino.runtime import Core | |
| ORT_TO_NP_TYPE = { | |
| "tensor(bool)": np.bool_, | |
| "tensor(int8)": np.int8, | |
| "tensor(uint8)": np.uint8, | |
| "tensor(int16)": np.int16, | |
| "tensor(uint16)": np.uint16, | |
| "tensor(int32)": np.int32, | |
| "tensor(uint32)": np.uint32, | |
| "tensor(int64)": np.int64, | |
| "tensor(uint64)": np.uint64, | |
| "tensor(float16)": np.float16, | |
| "tensor(float)": np.float32, | |
| "tensor(double)": np.float64, | |
| } | |
| logger = logging.get_logger(__name__) | |
| class OpenVINOStableDiffusionPipeline(DiffusionPipeline): | |
| vae_encoder: OnnxRuntimeModel | |
| vae_decoder: OnnxRuntimeModel | |
| text_encoder: OnnxRuntimeModel | |
| tokenizer: CLIPTokenizer | |
| unet: OnnxRuntimeModel | |
| scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] | |
| safety_checker: OnnxRuntimeModel | |
| feature_extractor: CLIPFeatureExtractor | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| def __init__( | |
| self, | |
| vae_encoder: OnnxRuntimeModel, | |
| vae_decoder: OnnxRuntimeModel, | |
| text_encoder: OnnxRuntimeModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: OnnxRuntimeModel, | |
| scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
| safety_checker: OnnxRuntimeModel, | |
| feature_extractor: CLIPFeatureExtractor, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| if hasattr(scheduler.config, | |
| "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file") | |
| deprecate("steps_offset!=1", | |
| "1.0.0", | |
| deprecation_message, | |
| standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, | |
| "clip_sample") and scheduler.config.clip_sample is True: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("clip_sample not set", | |
| "1.0.0", | |
| deprecation_message, | |
| standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| self.register_modules( | |
| vae_encoder=vae_encoder, | |
| vae_decoder=vae_decoder, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.convert_to_openvino() | |
| self.register_to_config( | |
| requires_safety_checker=requires_safety_checker) | |
| def from_onnx_pipeline(cls, onnx_pipe: OnnxStableDiffusionPipeline): | |
| r""" | |
| Create OpenVINOStableDiffusionPipeline from a onnx stable pipeline. | |
| Parameters: | |
| onnx_pipe (OnnxStableDiffusionPipeline) | |
| """ | |
| return cls(onnx_pipe.vae_encoder, onnx_pipe.vae_decoder, | |
| onnx_pipe.text_encoder, onnx_pipe.tokenizer, onnx_pipe.unet, | |
| onnx_pipe.scheduler, onnx_pipe.safety_checker, | |
| onnx_pipe.feature_extractor, True) | |
| def convert_to_openvino(self): | |
| ie = Core() | |
| # VAE decoder | |
| vae_decoder_onnx = ie.read_model( | |
| model=os.path.join(self.vae_decoder.model_save_dir, "model.onnx")) | |
| vae_decoder = ie.compile_model(model=vae_decoder_onnx, | |
| device_name="CPU") | |
| # Text encoder | |
| text_encoder_onnx = ie.read_model( | |
| model=os.path.join(self.text_encoder.model_save_dir, "model.onnx")) | |
| text_encoder = ie.compile_model(model=text_encoder_onnx, | |
| device_name="CPU") | |
| # Unet | |
| unet_onnx = ie.read_model( | |
| model=os.path.join(self.unet.model_save_dir, "model.onnx")) | |
| unet = ie.compile_model(model=unet_onnx, device_name="CPU") | |
| self.register_modules(vae_decoder=vae_decoder, | |
| text_encoder=text_encoder, | |
| unet=unet) | |
| def _encode_prompt(self, prompt, num_images_per_prompt, | |
| do_classifier_free_guidance, negative_prompt): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| prompt to be encoded | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| """ | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| # get prompt text embeddings | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, | |
| padding="max_length", | |
| return_tensors="np").input_ids | |
| if not np.array_equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}") | |
| prompt_embeds = self.text_encoder( | |
| {"input_ids": | |
| text_input_ids.astype(np.int32)})[self.text_encoder.outputs[0]] | |
| prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}.") | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] * batch_size | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`.") | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| negative_prompt_embeds = self.text_encoder({ | |
| "input_ids": | |
| uncond_input.input_ids.astype(np.int32) | |
| })[self.text_encoder.outputs[0]] | |
| negative_prompt_embeds = np.repeat(negative_prompt_embeds, | |
| num_images_per_prompt, | |
| axis=0) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = np.concatenate( | |
| [negative_prompt_embeds, prompt_embeds]) | |
| return prompt_embeds | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = 512, | |
| width: Optional[int] = 512, | |
| num_inference_steps: Optional[int] = 50, | |
| guidance_scale: Optional[float] = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[np.random.RandomState] = None, | |
| latents: Optional[np.ndarray] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, np.ndarray], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| ): | |
| if isinstance(prompt, str): | |
| batch_size = 1 | |
| elif isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| raise ValueError( | |
| f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
| ) | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
| ) | |
| if (callback_steps is None) or (callback_steps is not None and | |
| (not isinstance(callback_steps, int) | |
| or callback_steps <= 0)): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}.") | |
| if generator is None: | |
| generator = np.random | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt) | |
| # get the initial random noise unless the user supplied it | |
| latents_dtype = prompt_embeds.dtype | |
| latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, | |
| width // 8) | |
| if latents is None: | |
| latents = generator.randn(*latents_shape).astype(latents_dtype) | |
| elif latents.shape != latents_shape: | |
| raise ValueError( | |
| f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" | |
| ) | |
| # set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| latents = latents * np.float64(self.scheduler.init_noise_sigma) | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # timestep_dtype = next( | |
| # (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" | |
| # ) | |
| timestep_dtype = 'tensor(int64)' | |
| timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] | |
| for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = np.concatenate( | |
| [latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input( | |
| torch.from_numpy(latent_model_input), t) | |
| latent_model_input = latent_model_input.cpu().numpy() | |
| # predict the noise residual | |
| timestep = np.array([t], dtype=timestep_dtype) | |
| unet_input = { | |
| "sample": latent_model_input, | |
| "timestep": timestep, | |
| "encoder_hidden_states": prompt_embeds | |
| } | |
| noise_pred = self.unet(unet_input)[self.unet.outputs[0]] | |
| # noise_pred = noise_pred[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| scheduler_output = self.scheduler.step( | |
| torch.from_numpy(noise_pred), t, torch.from_numpy(latents), | |
| **extra_step_kwargs) | |
| latents = scheduler_output.prev_sample.numpy() | |
| # call the callback, if provided | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae_decoder({"latent_sample": | |
| latents})[self.vae_decoder.outputs[0]] | |
| image = np.clip(image / 2 + 0.5, 0, 1) | |
| image = image.transpose((0, 2, 3, 1)) | |
| if self.safety_checker is not None: | |
| safety_checker_input = self.feature_extractor( | |
| self.numpy_to_pil(image), | |
| return_tensors="np").pixel_values.astype(image.dtype) | |
| image, has_nsfw_concepts = self.safety_checker( | |
| clip_input=safety_checker_input, images=image) | |
| # There will throw an error if use safety_checker batchsize>1 | |
| images, has_nsfw_concept = [], [] | |
| for i in range(image.shape[0]): | |
| image_i, has_nsfw_concept_i = self.safety_checker( | |
| clip_input=safety_checker_input[i:i + 1], | |
| images=image[i:i + 1]) | |
| images.append(image_i) | |
| has_nsfw_concept.append(has_nsfw_concept_i[0]) | |
| image = np.concatenate(images) | |
| else: | |
| has_nsfw_concept = None | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput( | |
| images=image, nsfw_content_detected=has_nsfw_concept) | |