Spaces:
Running
Running
| import gradio as gr | |
| from gradio_client import Client | |
| from huggingface_hub import InferenceClient | |
| import random | |
| #ss_client = Client("https://omnibus-html-image-current-tab.hf.space/") | |
| models=[ | |
| "google/gemma-7b", | |
| "google/gemma-7b-it", | |
| "google/gemma-2b", | |
| "google/gemma-2b-it", | |
| "meta-llama/Llama-2-7b-chat-hf", | |
| "codellama/CodeLlama-70b-Instruct-hf", | |
| "openchat/openchat-3.5-0106", | |
| "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.2", | |
| "1bitLLM/bitnet_b1_58-3B", | |
| "1bitLLM/bitnet_b1_58-large", | |
| "1bitLLM/bitnet_b1_58-xl", | |
| "microsoft/WizardLM-2-8x22B", | |
| "microsoft/WizardLM-2-7B", | |
| "Qwen/Qwen1.5-7B-Chat-GGUF", | |
| "meta-llama/Meta-Llama-3-8B", | |
| "openai-community/gpt2", | |
| ] | |
| client_z=[] | |
| def load_models(inp,new_models): | |
| if not new_models: | |
| new_models=models | |
| out_box=[gr.Chatbot(),gr.Chatbot(),gr.Chatbot(),gr.Chatbot()] | |
| print(type(inp)) | |
| print(inp) | |
| #print(new_models[inp[0]]) | |
| client_z.clear() | |
| for z,ea in enumerate(inp): | |
| client_z.append(InferenceClient(new_models[inp[z]])) | |
| out_box[z]=(gr.update(label=new_models[inp[z]])) | |
| return out_box[0],out_box[1],out_box[2],out_box[3] | |
| def format_prompt_default(message, history): | |
| prompt = "" | |
| if history: | |
| #<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model | |
| for user_prompt, bot_response in history: | |
| prompt += f"{user_prompt}\n" | |
| print(prompt) | |
| prompt += f"{bot_response}\n" | |
| print(prompt) | |
| prompt += f"{message}\n" | |
| return prompt | |
| def format_prompt_gemma(message, history): | |
| prompt = "" | |
| if history: | |
| #<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model | |
| for user_prompt, bot_response in history: | |
| prompt += f"{user_prompt}\n" | |
| print(prompt) | |
| prompt += f"{bot_response}\n" | |
| print(prompt) | |
| prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model" | |
| return prompt | |
| def format_prompt_mixtral(message, history): | |
| prompt = "<s>" | |
| if history: | |
| for user_prompt, bot_response in history: | |
| prompt += f"[INST] {user_prompt} [/INST]" | |
| prompt += f" {bot_response}</s> " | |
| prompt += f"[INST] {message} [/INST]" | |
| return prompt | |
| def format_prompt_choose(message, history, model_name, new_models=None): | |
| if not new_models: | |
| new_models=models | |
| if "gemma" in new_models[model_name].lower() and "it" in new_models[model_name].lower(): | |
| return format_prompt_gemma(message,history) | |
| if "mixtral" in new_models[model_name].lower(): | |
| return format_prompt_mixtral(message,history) | |
| else: | |
| return format_prompt_default(message,history) | |
| mega_hist=[[],[],[],[]] | |
| def chat_inf_tree(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): | |
| if len(client_choice)>=hid_val: | |
| client=client_z[int(hid_val)-1] | |
| if history: | |
| mega_hist[hid_val-1]=history | |
| #history = [] | |
| hist_len=0 | |
| generate_kwargs = dict( | |
| temperature=temp, | |
| max_new_tokens=tokens, | |
| top_p=top_p, | |
| repetition_penalty=rep_p, | |
| do_sample=True, | |
| seed=seed, | |
| ) | |
| #formatted_prompt=prompt | |
| formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", mega_hist[hid_val-1]) | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| yield [(prompt,output)] | |
| mega_hist[hid_val-1].append((prompt,output)) | |
| yield mega_hist[hid_val-1] | |
| else: | |
| yield None | |
| def chat_inf_a(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): | |
| if len(client_choice)>=hid_val: | |
| if system_prompt: | |
| system_prompt=f'{system_prompt}, ' | |
| client1=client_z[int(hid_val)-1] | |
| if not history: | |
| history = [] | |
| hist_len=0 | |
| generate_kwargs = dict( | |
| temperature=temp, | |
| max_new_tokens=tokens, | |
| top_p=top_p, | |
| repetition_penalty=rep_p, | |
| do_sample=True, | |
| seed=seed, | |
| ) | |
| #formatted_prompt=prompt | |
| formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[0]) | |
| stream1 = client1.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream1: | |
| output += response.token.text | |
| yield [(prompt,output)] | |
| history.append((prompt,output)) | |
| yield history | |
| else: | |
| yield None | |
| def chat_inf_b(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): | |
| if len(client_choice)>=hid_val: | |
| if system_prompt: | |
| system_prompt=f'{system_prompt}, ' | |
| client2=client_z[int(hid_val)-1] | |
| if not history: | |
| history = [] | |
| hist_len=0 | |
| generate_kwargs = dict( | |
| temperature=temp, | |
| max_new_tokens=tokens, | |
| top_p=top_p, | |
| repetition_penalty=rep_p, | |
| do_sample=True, | |
| seed=seed, | |
| ) | |
| #formatted_prompt=prompt | |
| formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[1]) | |
| stream2 = client2.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream2: | |
| output += response.token.text | |
| yield [(prompt,output)] | |
| history.append((prompt,output)) | |
| yield history | |
| else: | |
| yield None | |
| def chat_inf_c(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): | |
| if len(client_choice)>=hid_val: | |
| if system_prompt: | |
| system_prompt=f'{system_prompt}, ' | |
| client3=client_z[int(hid_val)-1] | |
| if not history: | |
| history = [] | |
| hist_len=0 | |
| generate_kwargs = dict( | |
| temperature=temp, | |
| max_new_tokens=tokens, | |
| top_p=top_p, | |
| repetition_penalty=rep_p, | |
| do_sample=True, | |
| seed=seed, | |
| ) | |
| #formatted_prompt=prompt | |
| formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[2]) | |
| stream3 = client3.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream3: | |
| output += response.token.text | |
| yield [(prompt,output)] | |
| history.append((prompt,output)) | |
| yield history | |
| else: | |
| yield None | |
| def chat_inf_d(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val): | |
| if len(client_choice)>=hid_val: | |
| if system_prompt: | |
| system_prompt=f'{system_prompt}, ' | |
| client4=client_z[int(hid_val)-1] | |
| if not history: | |
| history = [] | |
| hist_len=0 | |
| generate_kwargs = dict( | |
| temperature=temp, | |
| max_new_tokens=tokens, | |
| top_p=top_p, | |
| repetition_penalty=rep_p, | |
| do_sample=True, | |
| seed=seed, | |
| ) | |
| #formatted_prompt=prompt | |
| formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[3]) | |
| stream4 = client4.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream4: | |
| output += response.token.text | |
| yield [(prompt,output)] | |
| history.append((prompt,output)) | |
| yield history | |
| else: | |
| yield None | |
| def add_new_model(inp, cur): | |
| cur.append(inp) | |
| return cur,gr.update(choices=[z for z in cur]) | |
| def load_new(models=models): | |
| return models | |
| def clear_fn(): | |
| return None,None,None,None,None,None | |
| rand_val=random.randint(1,1111111111111111) | |
| def check_rand(inp,val): | |
| if inp==True: | |
| return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111)) | |
| else: | |
| return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val)) | |
| with gr.Blocks() as app: | |
| new_models=gr.State([]) | |
| gr.HTML("""<center><h1 style='font-size:xx-large;'>Chatbot Model Compare</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""") | |
| with gr.Row(): | |
| chat_a = gr.Chatbot(height=500) | |
| chat_b = gr.Chatbot(height=500) | |
| with gr.Row(): | |
| chat_c = gr.Chatbot(height=500) | |
| chat_d = gr.Chatbot(height=500) | |
| with gr.Group(): | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| inp = gr.Textbox(label="Prompt") | |
| sys_inp = gr.Textbox(label="System Prompt (optional)") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| btn = gr.Button("Chat") | |
| with gr.Column(scale=1): | |
| with gr.Group(): | |
| stop_btn=gr.Button("Stop") | |
| clear_btn=gr.Button("Clear") | |
| client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],max_choices=4,multiselect=True,interactive=True) | |
| add_model=gr.Textbox(label="New Model") | |
| add_btn=gr.Button("Add Model") | |
| with gr.Column(scale=1): | |
| with gr.Group(): | |
| rand = gr.Checkbox(label="Random Seed", value=True) | |
| seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val) | |
| tokens = gr.Slider(label="Max new tokens",value=3840,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens") | |
| temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9) | |
| top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9) | |
| rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0) | |
| with gr.Accordion(label="Screenshot",open=False): | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| im_btn=gr.Button("Screenshot") | |
| img=gr.Image(type='filepath') | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| im_height=gr.Number(label="Height",value=5000) | |
| im_width=gr.Number(label="Width",value=500) | |
| wait_time=gr.Number(label="Wait Time",value=3000) | |
| theme=gr.Radio(label="Theme", choices=["light","dark"],value="light") | |
| chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True) | |
| hid1=gr.Number(value=1,visible=False) | |
| hid2=gr.Number(value=2,visible=False) | |
| hid3=gr.Number(value=3,visible=False) | |
| hid4=gr.Number(value=4,visible=False) | |
| app.load(load_new,None,new_models) | |
| add_btn.click(add_new_model,[add_model,new_models],[new_models,client_choice]) | |
| client_choice.change(load_models,[client_choice,new_models],[chat_a,chat_b,chat_c,chat_d]) | |
| #im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img) | |
| #chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b) | |
| go1=btn.click(check_rand,[rand,seed],seed).then(chat_inf_a,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid1],chat_a) | |
| go2=btn.click(check_rand,[rand,seed],seed).then(chat_inf_b,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid2],chat_b) | |
| go3=btn.click(check_rand,[rand,seed],seed).then(chat_inf_c,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid3],chat_c) | |
| go4=btn.click(check_rand,[rand,seed],seed).then(chat_inf_d,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid4],chat_d) | |
| stop_btn.click(None,None,None,cancels=[go1,go2,go3,go4]) | |
| clear_btn.click(clear_fn,None,[inp,sys_inp,chat_a,chat_b,chat_c,chat_d]) | |
| app.queue(default_concurrency_limit=10).launch() | |