Spaces:
Runtime error
Runtime error
| import logging | |
| import re | |
| from pathlib import Path | |
| import time | |
| import gradio as gr | |
| import nltk | |
| from cleantext import clean | |
| from summarize import load_model_and_tokenizer, summarize_via_tokenbatches | |
| from utils import load_examples, truncate_word_count | |
| _here = Path(__file__).parent | |
| nltk.download("stopwords") # TODO=find where this requirement originates from | |
| import transformers | |
| transformers.logging.set_verbosity_error() | |
| logging.basicConfig() | |
| def proc_submission( | |
| input_text: str, | |
| model_size: str, | |
| num_beams, | |
| token_batch_length, | |
| length_penalty, | |
| repetition_penalty, | |
| no_repeat_ngram_size, | |
| max_input_length: int = 512, | |
| ): | |
| """ | |
| proc_submission - a helper function for the gradio module | |
| Parameters | |
| ---------- | |
| input_text : str, required, the text to be processed | |
| max_input_length : int, optional, the maximum length of the input text, default=512 | |
| Returns | |
| ------- | |
| str of HTML, the interactive HTML form for the model | |
| """ | |
| settings = { | |
| "length_penalty": length_penalty, | |
| "repetition_penalty": repetition_penalty, | |
| "no_repeat_ngram_size": no_repeat_ngram_size, | |
| "encoder_no_repeat_ngram_size": 4, | |
| "num_beams": num_beams, | |
| "min_length": 4, | |
| "max_length": int(token_batch_length // 4), | |
| "early_stopping": True, | |
| "do_sample": False, | |
| } | |
| st = time.perf_counter() | |
| history = {} | |
| clean_text = clean(input_text, lower=False) | |
| max_input_length = 1024 if model_size == "base" else max_input_length | |
| processed = truncate_word_count(clean_text, max_input_length) | |
| if processed["was_truncated"]: | |
| tr_in = processed["truncated_text"] | |
| msg = f"Input text was truncated to {max_input_length} words (based on whitespace)" | |
| logging.warning(msg) | |
| history["WARNING"] = msg | |
| else: | |
| tr_in = input_text | |
| _summaries = summarize_via_tokenbatches( | |
| tr_in, | |
| model_sm if model_size == "base" else model, | |
| tokenizer_sm if model_size == "base" else tokenizer, | |
| batch_length=token_batch_length, | |
| **settings, | |
| ) | |
| sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)] | |
| sum_scores = [ | |
| f"\n - Section {i}: {round(s['summary_score'],4)}" | |
| for i, s in enumerate(_summaries) | |
| ] | |
| history["Summary Text"] = "<br>".join(sum_text) | |
| history["Summary Scores"] = "\n".join(sum_scores) | |
| history["Input"] = tr_in | |
| html = "" | |
| rt = round((time.perf_counter() - st)/60, 2) | |
| print(f"Runtime: {rt} minutes") | |
| html += f"<p>Runtime: {rt} minutes on CPU</p>" | |
| for name, item in history.items(): | |
| html += ( | |
| f"<h2>{name}:</h2><hr><b>{item}</b><br><br>" | |
| if "summary" not in name.lower() | |
| else f"<h2>{name}:</h2><hr>{item}<br><br>" | |
| ) | |
| html += "" | |
| return html | |
| if __name__ == "__main__": | |
| model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary") | |
| model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary") | |
| title = "Long-Form Summarization: LED & BookSum" | |
| description = """ | |
| A simple demo of how to use a fine-tuned LED model to summarize long-form text. | |
| - [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209). | |
| - The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage. | |
| - See [model card](https://huggingface.co/pszemraj/led-large-book-summary) for a notebook with GPU inference (much faster) on Colab. | |
| --- | |
| """ | |
| gr.Interface( | |
| proc_submission, | |
| inputs=[ | |
| gr.inputs.Textbox( | |
| lines=10, | |
| label="input text", | |
| placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)", | |
| ), | |
| gr.inputs.Radio( | |
| choices=["base", "large"], label="model size", default="base" | |
| ), | |
| gr.inputs.Slider( | |
| minimum=2, maximum=4, label="num_beams", default=2, step=1 | |
| ), | |
| gr.inputs.Slider( | |
| minimum=512, | |
| maximum=1024, | |
| label="token_batch_length", | |
| default=512, | |
| step=256, | |
| ), | |
| gr.inputs.Slider( | |
| minimum=0.5, maximum=1.1, label="length_penalty", default=0.7, step=0.05 | |
| ), | |
| gr.inputs.Slider( | |
| minimum=1.0, | |
| maximum=5.0, | |
| label="repetition_penalty", | |
| default=3.5, | |
| step=0.1, | |
| ), | |
| gr.inputs.Slider( | |
| minimum=2, maximum=4, label="no_repeat_ngram_size", default=3, step=1 | |
| ), | |
| ], | |
| outputs="html", | |
| examples_per_page=2, | |
| title=title, | |
| description=description, | |
| article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.", | |
| examples=load_examples(_here / "examples"), | |
| cache_examples=True, | |
| ).launch() | |