Spaces:
Sleeping
Sleeping
updates-v2
Browse files- app.py +1 -2
- summarize.py +3 -3
app.py
CHANGED
|
@@ -26,7 +26,6 @@ logging.basicConfig(
|
|
| 26 |
|
| 27 |
MODEL_OPTIONS = [
|
| 28 |
"pszemraj/led-large-book-summary",
|
| 29 |
-
"pszemraj/led-large-book-summary-continued",
|
| 30 |
"pszemraj/led-base-book-summary",
|
| 31 |
]
|
| 32 |
|
|
@@ -341,7 +340,7 @@ if __name__ == "__main__":
|
|
| 341 |
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a Colab notebook for a tutorial."
|
| 342 |
)
|
| 343 |
gr.Markdown(
|
| 344 |
-
"- **Update May 1, 2023:** Enabled faster inference times via `use_cache=True`, the number of words the model will processed has been increased!
|
| 345 |
)
|
| 346 |
gr.Markdown("---")
|
| 347 |
|
|
|
|
| 26 |
|
| 27 |
MODEL_OPTIONS = [
|
| 28 |
"pszemraj/led-large-book-summary",
|
|
|
|
| 29 |
"pszemraj/led-base-book-summary",
|
| 30 |
]
|
| 31 |
|
|
|
|
| 340 |
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a Colab notebook for a tutorial."
|
| 341 |
)
|
| 342 |
gr.Markdown(
|
| 343 |
+
"- **Update May 1, 2023:** Enabled faster inference times via `use_cache=True`, the number of words the model will processed has been increased! Not on this demo, but there is a [test model](https://huggingface.co/pszemraj/led-large-book-summary-continued) available: an extension of `led-large-book-summary`."
|
| 344 |
)
|
| 345 |
gr.Markdown("---")
|
| 346 |
|
summarize.py
CHANGED
|
@@ -127,7 +127,7 @@ def summarize_via_tokenbatches(
|
|
| 127 |
in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask
|
| 128 |
gen_summaries = []
|
| 129 |
|
| 130 |
-
pbar = tqdm(total=len(in_id_arr))
|
| 131 |
|
| 132 |
for _id, _mask in zip(in_id_arr, att_arr):
|
| 133 |
result, score = summarize_and_score(
|
|
@@ -144,9 +144,9 @@ def summarize_via_tokenbatches(
|
|
| 144 |
"summary_score": score,
|
| 145 |
}
|
| 146 |
gen_summaries.append(_sum)
|
| 147 |
-
|
| 148 |
pbar.update()
|
| 149 |
|
| 150 |
pbar.close()
|
| 151 |
-
|
| 152 |
return gen_summaries
|
|
|
|
| 127 |
in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask
|
| 128 |
gen_summaries = []
|
| 129 |
|
| 130 |
+
pbar = tqdm(total=len(in_id_arr), desc="Summarizing")
|
| 131 |
|
| 132 |
for _id, _mask in zip(in_id_arr, att_arr):
|
| 133 |
result, score = summarize_and_score(
|
|
|
|
| 144 |
"summary_score": score,
|
| 145 |
}
|
| 146 |
gen_summaries.append(_sum)
|
| 147 |
+
logger.info(f"SCore {score} for summary:\n\t{result}")
|
| 148 |
pbar.update()
|
| 149 |
|
| 150 |
pbar.close()
|
| 151 |
+
logger.debug(f"Generated summaries:\n{pp.pformat(gen_summaries)}")
|
| 152 |
return gen_summaries
|