Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
try:
|
| 3 |
+
token =os.environ['HF_TOKEN']
|
| 4 |
+
except:
|
| 5 |
+
print("paste your hf token here!")
|
| 6 |
+
token = "hf_xxxxxxxxxxxxxxxxxxx"
|
| 7 |
+
os.environ['HF_TOKEN'] = token
|
| 8 |
+
import torch
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 11 |
+
|
| 12 |
+
from transformers import AutoTokenizer, AutoModel
|
| 13 |
+
|
| 14 |
+
# ========================================
|
| 15 |
+
# Model Initialization
|
| 16 |
+
# ========================================
|
| 17 |
+
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained('OpenGVLab/InternVideo2_chat_8B_HD',
|
| 19 |
+
trust_remote_code=True,
|
| 20 |
+
use_fast=False,
|
| 21 |
+
token=token)
|
| 22 |
+
if torch.cuda.is_available():
|
| 23 |
+
model = AutoModel.from_pretrained(
|
| 24 |
+
'OpenGVLab/InternVideo2_chat_8B_HD',
|
| 25 |
+
torch_dtype=torch.bfloat16,
|
| 26 |
+
trust_remote_code=True).cuda()
|
| 27 |
+
else:
|
| 28 |
+
model = AutoModel.from_pretrained(
|
| 29 |
+
'OpenGVLab/InternVideo2_chat_8B_HD',
|
| 30 |
+
torch_dtype=torch.bfloat16,
|
| 31 |
+
trust_remote_code=True)
|
| 32 |
+
|
| 33 |
+
from decord import VideoReader, cpu
|
| 34 |
+
from PIL import Image
|
| 35 |
+
import numpy as np
|
| 36 |
+
import numpy as np
|
| 37 |
+
import decord
|
| 38 |
+
from decord import VideoReader, cpu
|
| 39 |
+
import torch.nn.functional as F
|
| 40 |
+
import torchvision.transforms as T
|
| 41 |
+
from torchvision.transforms import PILToTensor
|
| 42 |
+
from torchvision import transforms
|
| 43 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 44 |
+
decord.bridge.set_bridge("torch")
|
| 45 |
+
|
| 46 |
+
# ========================================
|
| 47 |
+
# Define Utils
|
| 48 |
+
# ========================================
|
| 49 |
+
def get_index(num_frames, num_segments):
|
| 50 |
+
seg_size = float(num_frames - 1) / num_segments
|
| 51 |
+
start = int(seg_size / 2)
|
| 52 |
+
offsets = np.array([
|
| 53 |
+
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
|
| 54 |
+
])
|
| 55 |
+
return offsets
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def load_video(video_path, num_segments=8, return_msg=False, resolution=224, hd_num=4, padding=False):
|
| 59 |
+
decord.bridge.set_bridge("torch")
|
| 60 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
| 61 |
+
num_frames = len(vr)
|
| 62 |
+
frame_indices = get_index(num_frames, num_segments)
|
| 63 |
+
|
| 64 |
+
mean = (0.485, 0.456, 0.406)
|
| 65 |
+
std = (0.229, 0.224, 0.225)
|
| 66 |
+
|
| 67 |
+
transform = transforms.Compose([
|
| 68 |
+
transforms.Lambda(lambda x: x.float().div(255.0)),
|
| 69 |
+
transforms.Normalize(mean, std)
|
| 70 |
+
])
|
| 71 |
+
|
| 72 |
+
frames = vr.get_batch(frame_indices)
|
| 73 |
+
# frames = torch.from_numpy(frames)
|
| 74 |
+
frames = frames.permute(0, 3, 1, 2)
|
| 75 |
+
|
| 76 |
+
if padding:
|
| 77 |
+
frames = HD_transform_padding(frames.float(), image_size=resolution, hd_num=hd_num)
|
| 78 |
+
else:
|
| 79 |
+
frames = HD_transform_no_padding(frames.float(), image_size=resolution, hd_num=hd_num)
|
| 80 |
+
|
| 81 |
+
frames = transform(frames)
|
| 82 |
+
# print(frames.shape)
|
| 83 |
+
T_, C, H, W = frames.shape
|
| 84 |
+
|
| 85 |
+
sub_img = frames.reshape(
|
| 86 |
+
1, T_, 3, H//resolution, resolution, W//resolution, resolution
|
| 87 |
+
).permute(0, 3, 5, 1, 2, 4, 6).reshape(-1, T_, 3, resolution, resolution).contiguous()
|
| 88 |
+
|
| 89 |
+
glb_img = F.interpolate(
|
| 90 |
+
frames.float(), size=(resolution, resolution), mode='bicubic', align_corners=False
|
| 91 |
+
).to(sub_img.dtype).unsqueeze(0)
|
| 92 |
+
|
| 93 |
+
frames = torch.cat([sub_img, glb_img]).unsqueeze(0)
|
| 94 |
+
|
| 95 |
+
if return_msg:
|
| 96 |
+
fps = float(vr.get_avg_fps())
|
| 97 |
+
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
|
| 98 |
+
# " " should be added in the start and end
|
| 99 |
+
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
|
| 100 |
+
return frames, msg
|
| 101 |
+
else:
|
| 102 |
+
return frames
|
| 103 |
+
|
| 104 |
+
def HD_transform_padding(frames, image_size=224, hd_num=6):
|
| 105 |
+
def _padding_224(frames):
|
| 106 |
+
_, _, H, W = frames.shape
|
| 107 |
+
tar = int(np.ceil(H / 224) * 224)
|
| 108 |
+
top_padding = (tar - H) // 2
|
| 109 |
+
bottom_padding = tar - H - top_padding
|
| 110 |
+
left_padding = 0
|
| 111 |
+
right_padding = 0
|
| 112 |
+
|
| 113 |
+
padded_frames = F.pad(
|
| 114 |
+
frames,
|
| 115 |
+
pad=[left_padding, right_padding, top_padding, bottom_padding],
|
| 116 |
+
mode='constant', value=255
|
| 117 |
+
)
|
| 118 |
+
return padded_frames
|
| 119 |
+
|
| 120 |
+
_, _, H, W = frames.shape
|
| 121 |
+
trans = False
|
| 122 |
+
if W < H:
|
| 123 |
+
frames = frames.flip(-2, -1)
|
| 124 |
+
trans = True
|
| 125 |
+
width, height = H, W
|
| 126 |
+
else:
|
| 127 |
+
width, height = W, H
|
| 128 |
+
|
| 129 |
+
ratio = width / height
|
| 130 |
+
scale = 1
|
| 131 |
+
while scale * np.ceil(scale / ratio) <= hd_num:
|
| 132 |
+
scale += 1
|
| 133 |
+
scale -= 1
|
| 134 |
+
new_w = int(scale * image_size)
|
| 135 |
+
new_h = int(new_w / ratio)
|
| 136 |
+
|
| 137 |
+
resized_frames = F.interpolate(
|
| 138 |
+
frames, size=(new_h, new_w),
|
| 139 |
+
mode='bicubic',
|
| 140 |
+
align_corners=False
|
| 141 |
+
)
|
| 142 |
+
padded_frames = _padding_224(resized_frames)
|
| 143 |
+
|
| 144 |
+
if trans:
|
| 145 |
+
padded_frames = padded_frames.flip(-2, -1)
|
| 146 |
+
|
| 147 |
+
return padded_frames
|
| 148 |
+
|
| 149 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 150 |
+
best_ratio_diff = float('inf')
|
| 151 |
+
best_ratio = (1, 1)
|
| 152 |
+
area = width * height
|
| 153 |
+
for ratio in target_ratios:
|
| 154 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 155 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 156 |
+
if ratio_diff < best_ratio_diff:
|
| 157 |
+
best_ratio_diff = ratio_diff
|
| 158 |
+
best_ratio = ratio
|
| 159 |
+
elif ratio_diff == best_ratio_diff:
|
| 160 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 161 |
+
best_ratio = ratio
|
| 162 |
+
return best_ratio
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def HD_transform_no_padding(frames, image_size=224, hd_num=6, fix_ratio=(2,1)):
|
| 166 |
+
min_num = 1
|
| 167 |
+
max_num = hd_num
|
| 168 |
+
_, _, orig_height, orig_width = frames.shape
|
| 169 |
+
aspect_ratio = orig_width / orig_height
|
| 170 |
+
|
| 171 |
+
# calculate the existing video aspect ratio
|
| 172 |
+
target_ratios = set(
|
| 173 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 174 |
+
i * j <= max_num and i * j >= min_num)
|
| 175 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 176 |
+
|
| 177 |
+
# find the closest aspect ratio to the target
|
| 178 |
+
if fix_ratio:
|
| 179 |
+
target_aspect_ratio = fix_ratio
|
| 180 |
+
else:
|
| 181 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
| 182 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 183 |
+
|
| 184 |
+
# calculate the target width and height
|
| 185 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 186 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 187 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 188 |
+
|
| 189 |
+
# resize the frames
|
| 190 |
+
resized_frame = F.interpolate(
|
| 191 |
+
frames, size=(target_height, target_width),
|
| 192 |
+
mode='bicubic', align_corners=False
|
| 193 |
+
)
|
| 194 |
+
return resized_frame
|
| 195 |
+
|
| 196 |
+
# ========================================
|
| 197 |
+
# Gradio Setting
|
| 198 |
+
# ========================================
|
| 199 |
+
def gradio_reset(chat_state, img_list):
|
| 200 |
+
if chat_state is not None:
|
| 201 |
+
chat_state = []
|
| 202 |
+
if img_list is not None:
|
| 203 |
+
img_list = None
|
| 204 |
+
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def upload_img( gr_video, num_segments, hd_num, padding):
|
| 208 |
+
img_list = []
|
| 209 |
+
if gr_video is None:
|
| 210 |
+
return None, None, gr.update(interactive=True),gr.update(interactive=True, placeholder='Please upload video/image first!'), None
|
| 211 |
+
if gr_video:
|
| 212 |
+
video_tensor, msg = load_video(gr_video, num_segments=num_segments, return_msg=True, resolution=224, hd_num=hd_num, padding=padding)
|
| 213 |
+
video_tensor = video_tensor.to(model.device)
|
| 214 |
+
return gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), video_tensor
|
| 215 |
+
# if gr_img:
|
| 216 |
+
# llm_message, img_list,chat_state = chat.upload_img(gr_img, chat_state, img_list)
|
| 217 |
+
# return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False)
|
| 218 |
+
|
| 219 |
+
def clear_():
|
| 220 |
+
return [], []
|
| 221 |
+
|
| 222 |
+
def gradio_ask(user_message, chatbot):
|
| 223 |
+
if len(user_message) == 0:
|
| 224 |
+
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
| 225 |
+
chatbot = chatbot + [[user_message, None]]
|
| 226 |
+
return '', chatbot
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def gradio_answer(chatbot, sys_prompt, user_prompt, video_tensor, chat_state, num_beams, temperature, do_sample=False):
|
| 230 |
+
response, chat_state = model.chat(tokenizer,
|
| 231 |
+
sys_prompt,
|
| 232 |
+
user_prompt,
|
| 233 |
+
media_type='video',
|
| 234 |
+
media_tensor=video_tensor,
|
| 235 |
+
chat_history= chat_state,
|
| 236 |
+
return_history=True,
|
| 237 |
+
generation_config={
|
| 238 |
+
"num_beams": num_beams,
|
| 239 |
+
"temperature": temperature,
|
| 240 |
+
"do_sample": do_sample})
|
| 241 |
+
print(response)
|
| 242 |
+
chatbot[-1][1] = response
|
| 243 |
+
return chatbot, chat_state
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class OpenGVLab(gr.themes.base.Base):
|
| 247 |
+
def __init__(
|
| 248 |
+
self,
|
| 249 |
+
*,
|
| 250 |
+
primary_hue=colors.blue,
|
| 251 |
+
secondary_hue=colors.sky,
|
| 252 |
+
neutral_hue=colors.gray,
|
| 253 |
+
spacing_size=sizes.spacing_md,
|
| 254 |
+
radius_size=sizes.radius_sm,
|
| 255 |
+
text_size=sizes.text_md,
|
| 256 |
+
font=(
|
| 257 |
+
fonts.GoogleFont("Noto Sans"),
|
| 258 |
+
"ui-sans-serif",
|
| 259 |
+
"sans-serif",
|
| 260 |
+
),
|
| 261 |
+
font_mono=(
|
| 262 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
| 263 |
+
"ui-monospace",
|
| 264 |
+
"monospace",
|
| 265 |
+
),
|
| 266 |
+
):
|
| 267 |
+
super().__init__(
|
| 268 |
+
primary_hue=primary_hue,
|
| 269 |
+
secondary_hue=secondary_hue,
|
| 270 |
+
neutral_hue=neutral_hue,
|
| 271 |
+
spacing_size=spacing_size,
|
| 272 |
+
radius_size=radius_size,
|
| 273 |
+
text_size=text_size,
|
| 274 |
+
font=font,
|
| 275 |
+
font_mono=font_mono,
|
| 276 |
+
)
|
| 277 |
+
super().set(
|
| 278 |
+
body_background_fill="*neutral_50",
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
gvlabtheme = OpenGVLab(primary_hue=colors.blue,
|
| 283 |
+
secondary_hue=colors.sky,
|
| 284 |
+
neutral_hue=colors.gray,
|
| 285 |
+
spacing_size=sizes.spacing_md,
|
| 286 |
+
radius_size=sizes.radius_sm,
|
| 287 |
+
text_size=sizes.text_md,
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
title = """<h1 align="center"><a href="https://github.com/OpenGVLab/Ask-Anything"><img src="https://s1.ax1x.com/2023/05/07/p9dBMOU.png" alt="Ask-Anything" border="0" style="margin: 0 auto; height: 100px;" /></a> </h1>"""
|
| 291 |
+
description ="""
|
| 292 |
+
VideoChat2 powered by InternVideo!<br><p><a href='https://github.com/OpenGVLab/Ask-Anything'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p>
|
| 293 |
+
"""
|
| 294 |
+
SYS_PROMPT =""
|
| 295 |
+
|
| 296 |
+
with gr.Blocks(title="InternVideo-VideoChat!",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
|
| 297 |
+
gr.Markdown(title)
|
| 298 |
+
gr.Markdown(description)
|
| 299 |
+
|
| 300 |
+
with gr.Row():
|
| 301 |
+
with gr.Column(scale=0.5, visible=True) as video_upload:
|
| 302 |
+
with gr.Column(elem_id="image", scale=0.5) as img_part:
|
| 303 |
+
# with gr.Tab("Video", elem_id='video_tab'):
|
| 304 |
+
up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload")
|
| 305 |
+
# with gr.Tab("Image", elem_id='image_tab'):
|
| 306 |
+
# up_image = gr.Image(type="pil", interactive=True, elem_id="image_upload")
|
| 307 |
+
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
| 308 |
+
restart = gr.Button("Restart")
|
| 309 |
+
sys_prompt = gr.State(f"{SYS_PROMPT}")
|
| 310 |
+
|
| 311 |
+
num_beams = gr.Slider(
|
| 312 |
+
minimum=1,
|
| 313 |
+
maximum=10,
|
| 314 |
+
value=1,
|
| 315 |
+
step=1,
|
| 316 |
+
interactive=True,
|
| 317 |
+
label="beam search numbers)",
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
temperature = gr.Slider(
|
| 321 |
+
minimum=0.1,
|
| 322 |
+
maximum=2.0,
|
| 323 |
+
value=1.0,
|
| 324 |
+
step=0.1,
|
| 325 |
+
interactive=True,label="Temperature",
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
num_segments = gr.Slider(
|
| 329 |
+
minimum=8,
|
| 330 |
+
maximum=64,
|
| 331 |
+
value=8,
|
| 332 |
+
step=1,
|
| 333 |
+
interactive=True,
|
| 334 |
+
label="Input Frames",
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
resolution = gr.Slider(
|
| 338 |
+
minimum=224,
|
| 339 |
+
maximum=224,
|
| 340 |
+
value=224,
|
| 341 |
+
step=1,
|
| 342 |
+
interactive=True,
|
| 343 |
+
label="Vision encoder resolution",
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
hd_num = gr.Slider(
|
| 347 |
+
minimum=1,
|
| 348 |
+
maximum=10,
|
| 349 |
+
value=4,
|
| 350 |
+
step=1,
|
| 351 |
+
interactive=True,
|
| 352 |
+
label="HD num",
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
padding = gr.Checkbox(
|
| 356 |
+
label="padding",
|
| 357 |
+
info=""
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
with gr.Column(visible=True) as input_raws:
|
| 361 |
+
chat_state = gr.State([])
|
| 362 |
+
img_list = gr.State()
|
| 363 |
+
chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat')
|
| 364 |
+
with gr.Row():
|
| 365 |
+
with gr.Column(scale=0.7):
|
| 366 |
+
text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False)
|
| 367 |
+
with gr.Column(scale=0.15, min_width=0):
|
| 368 |
+
run = gr.Button("💭Send")
|
| 369 |
+
with gr.Column(scale=0.15, min_width=0):
|
| 370 |
+
clear = gr.Button("🔄Clear️")
|
| 371 |
+
|
| 372 |
+
upload_button.click(upload_img, [ up_video, num_segments, hd_num, padding], [ up_video, text_input, upload_button, img_list])
|
| 373 |
+
|
| 374 |
+
text_input.submit(gradio_ask, [text_input, chatbot], [text_input, chatbot]).then(
|
| 375 |
+
gradio_answer, [chatbot, sys_prompt, text_input, img_list, chat_state, num_beams, temperature], [chatbot, chat_state]
|
| 376 |
+
)
|
| 377 |
+
run.click(gradio_ask, [text_input, chatbot], [text_input, chatbot]).then(
|
| 378 |
+
gradio_answer, [chatbot, sys_prompt, text_input, img_list, chat_state, num_beams, temperature], [chatbot, chat_state]
|
| 379 |
+
)
|
| 380 |
+
run.click(lambda: "", None, text_input)
|
| 381 |
+
clear.click(clear_, None, [chatbot, chat_state])
|
| 382 |
+
restart.click(gradio_reset, [chat_state, img_list], [chatbot, up_video, text_input, upload_button, chat_state, img_list], queue=False)
|
| 383 |
+
|
| 384 |
+
demo.launch()
|