File size: 10,679 Bytes
f5abf67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import argparse
import datetime
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
from copy import deepcopy
import os
import torch
import torch.distributed as dist
import deepspeed

from hyperpyyaml import load_hyperpyyaml

from torch.distributed.elastic.multiprocessing.errors import record

from cosyvoice.utils.losses import DPOLoss
from cosyvoice.utils.executor import Executor
from cosyvoice.utils.train_utils import (
    init_distributed,
    init_dataset_and_dataloader,
    init_optimizer_and_scheduler,
    init_summarywriter, save_model,
    wrap_cuda_model, check_modify_and_save_config)


def get_args():
    parser = argparse.ArgumentParser(description='training your network')
    parser.add_argument('--train_engine',
                        default='torch_ddp',
                        choices=['torch_ddp', 'deepspeed'],
                        help='Engine for paralleled training')
    parser.add_argument('--model', required=True, help='model which will be trained')
    parser.add_argument('--ref_model', required=False, help='ref model used in dpo')
    parser.add_argument('--config', required=True, help='config file')
    parser.add_argument('--train_data', required=True, help='train data file')
    parser.add_argument('--cv_data', required=True, help='cv data file')
    parser.add_argument('--generate_data', required=True, help='generate data file')
    parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
    parser.add_argument('--checkpoint', help='checkpoint model')
    parser.add_argument('--hift_checkpoint', help='checkpoint model')
    parser.add_argument('--model_dir', required=True, help='save model dir')
    parser.add_argument('--tensorboard_dir',
                        default='tensorboard',
                        help='tensorboard log dir')
    parser.add_argument('--ddp.dist_backend',
                        dest='dist_backend',
                        default='nccl',
                        choices=['nccl', 'gloo'],
                        help='distributed backend')
    parser.add_argument('--num_workers',
                        default=0,
                        type=int,
                        help='num of subprocess workers for reading')
    parser.add_argument('--prefetch',
                        default=100,
                        type=int,
                        help='prefetch number')
    parser.add_argument('--pin_memory',
                        action='store_true',
                        default=False,
                        help='Use pinned memory buffers used for reading')
    parser.add_argument('--use_amp',
                        action='store_true',
                        default=False,
                        help='Use automatic mixed precision training')
    parser.add_argument('--dpo',
                        action='store_true',
                        default=False,
                        help='Use Direct Preference Optimization')
    parser.add_argument('--deepspeed.save_states',
                        dest='save_states',
                        default='model_only',
                        choices=['model_only', 'model+optimizer'],
                        help='save model/optimizer states')
    parser.add_argument('--timeout',
                        default=600000,
                        type=int,
                        help='timeout (in seconds) of cosyvoice_join.')
    parser = deepspeed.add_config_arguments(parser)
    args = parser.parse_args()
    return args


@record
def main():
    args = get_args()
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s')
    # gan train has some special initialization logic
    gan = True if args.model == 'hifigan' else False

    override_dict = {k: None for k in ['llm', 'flow'] if k != args.model}
    if gan is True:
        override_dict.pop('hift')
    try:
        with open(args.config, 'r') as f:
            configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
    except Exception:
        with open(args.config, 'r') as f:
            configs = load_hyperpyyaml(f, overrides=override_dict)
    if gan is True:
        configs['train_conf'] = configs['train_conf_gan']
    configs['train_conf'].update(vars(args))

    # Init env for ddp
    init_distributed(args)
    logging.info(f"Successfully init distributed")
    # Get dataset & dataloader
    train_dataset, cv_dataset, generate_dataset,train_data_loader, cv_data_loader,generate_data_loader = \
        init_dataset_and_dataloader(args, configs, gan, args.dpo)
    
    logging.info(f"Successfully init dataset and dataloader")
    # Do some sanity checks and save config to arsg.model_dir
    configs = check_modify_and_save_config(args, configs)
    logging.info(f"Successfully check_modify_and_save_config")
    # Tensorboard summary
    writer = init_summarywriter(args)
    logging.info(f"Successfully init_summarywriter")
    # load checkpoint
    if args.dpo is True:
        configs[args.model].forward = configs[args.model].forward_dpo
    model = configs[args.model]
    logging.info(f"Successfully init_model")
    start_step, start_epoch = 0, -1
    if args.checkpoint is not None:
        if os.path.exists(args.checkpoint):
            checkpoint_state_dict = torch.load(args.checkpoint, map_location='cpu')
            state_dict=checkpoint_state_dict
            #model.load_state_dict(state_dict, strict=False)
            model_state_dict = model.state_dict()
            filtered_state_dict = {}
            loaded_keys = []
            skipped_keys = []

            for k, v in checkpoint_state_dict.items():
                if isinstance(v,int):
                    continue
                if k in model_state_dict and v.shape == model_state_dict[k].shape:
                    filtered_state_dict[k] = v
                    loaded_keys.append(k)
                else:
                    skipped_keys.append(k)
            model_state_dict.update(filtered_state_dict)
            model.load_state_dict(model_state_dict, strict=True)
            if skipped_keys:
                logging.warning("Weights for the following keys were SKIPPED due to name/shape mismatch:")
                for key in skipped_keys:
                    shape_in_checkpoint = checkpoint_state_dict[key].shape if key in checkpoint_state_dict else 'N/A'
                    shape_in_model = model_state_dict[key].shape if key in model_state_dict else 'N/A'
                    logging.warning(f"  - {key} (Checkpoint: {shape_in_checkpoint}, Model: {shape_in_model})")
            logging.info(f"Successfully loaded {len(loaded_keys)} matching parameters.")
            # if 'step' in checkpoint_state_dict:
            #     start_step = checkpoint_state_dict['step']
            # if 'epoch' in checkpoint_state_dict:
            #     start_epoch = checkpoint_state_dict['epoch']
        else:
            logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))

    if args.hift_checkpoint is not None:
        hift=configs['hift']
        if os.path.exists(args.hift_checkpoint):
            state_dict = torch.load(args.hift_checkpoint, map_location='cpu')
            hift.load_state_dict(state_dict, strict=True)
            hift.eval()
            for param in hift.parameters():
                param.requires_grad = False
                
            logging.info("Hift model loaded in inference mode (eval, no_grad).")
            if 'step' in state_dict:
                start_step = state_dict['step']
            if 'epoch' in state_dict:
                start_epoch = state_dict['epoch']
        else:
            logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
        
    # Dispatch model from cpu to gpu
    model = wrap_cuda_model(args, model)
    hift=hift.cuda()
    # Get optimizer & scheduler
    model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
    scheduler.set_step(start_step)
    if scheduler_d is not None:
        scheduler_d.set_step(start_step)

    # Save init checkpoints
    info_dict = deepcopy(configs['train_conf'])
    info_dict['step'] = start_step
    info_dict['epoch'] = start_epoch
    save_model(model, 'init', info_dict)

    # DPO related
    if args.dpo is True:
        ref_model = deepcopy(configs[args.model])
        state_dict = torch.load(args.ref_model, map_location='cpu')
        ref_model.load_state_dict(state_dict, strict=False)
        dpo_loss = DPOLoss(beta=0.01, label_smoothing=0.0, ipo=False)
        # NOTE maybe it is not needed to wrap ref_model as ddp because its parameter is not updated
        ref_model = wrap_cuda_model(args, ref_model)
    else:
        ref_model, dpo_loss = None, None

    # Get executor
    executor = Executor(gan=gan, ref_model=ref_model, dpo_loss=dpo_loss)
    executor.step = start_step
    # executor.evaluate_interval=args.evaluate_interval
    # Init scaler, used for pytorch amp mixed precision training
    scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
    print('start step {} start epoch {}'.format(start_step, start_epoch))

    # Start training loop
    for epoch in range(start_epoch + 1, info_dict['max_epoch']):
        executor.epoch = epoch
        train_dataset.set_epoch(epoch)
        dist.barrier()
        group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
        if gan is True:
            executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
                                        writer, info_dict, scaler, group_join)
        else:
            executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=ref_model)
        dist.destroy_process_group(group_join)


if __name__ == '__main__':
    main()