File size: 19,976 Bytes
f5abf67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
#               2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil 
import logging
from contextlib import nullcontext
import os
import torchaudio
import torch
import torch.distributed as dist
import torchaudio
from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
import datetime
import sys
from datetime import timedelta
sys.path.append('/inspire/hdd/project/embodied-multimodality/public/lzjjin/CosyVoice/cosyvoice/utils')
from file_utils import get_dataset_name_from_path
class Executor:

    def __init__(self, gan: bool = False, ref_model: torch.nn.Module = None, dpo_loss: torch.nn.Module = None):
        self.gan = gan
        self.ref_model = ref_model
        self.dpo_loss = dpo_loss
        self.step = 0
        self.epoch = 0
        self.validate_interval=None
        self.rank = int(os.environ.get('RANK', 0))
        self.device = torch.device('cuda:{}'.format(self.rank))

    def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
        ''' Train one epoch
        '''

        lr = optimizer.param_groups[0]['lr']
        logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
        logging.info('using accumulate grad, new batch size is {} times'
                     ' larger than before'.format(info_dict['accum_grad']))
        # A context manager to be used in conjunction with an instance of
        # torch.nn.parallel.DistributedDataParallel to be able to train
        # with uneven inputs across participating processes.
        model.train()
        if self.ref_model is not None:
            self.ref_model.eval()
        model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
        with model_context():
            for batch_idx, batch_dict in enumerate(train_data_loader):
                info_dict["tag"] = "TRAIN"
                info_dict["step"] = self.step
                info_dict["epoch"] = self.epoch
                info_dict["batch_idx"] = batch_idx
                if cosyvoice_join(group_join, info_dict):
                    break

                # Disable gradient synchronizations across DDP processes.
                # Within this context, gradients will be accumulated on module
                # variables, which will later be synchronized.
                if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
                    context = model.no_sync
                # Used for single gpu training and DDP gradient synchronization
                # processes.
                else:
                    context = nullcontext

                with context():
                    info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model=self.ref_model, dpo_loss=self.dpo_loss)
                    info_dict = batch_backward(model, scaler, info_dict)

                info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
                log_per_step(writer, info_dict)
                # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
                if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
                   (batch_idx + 1) % info_dict["accum_grad"] == 0:
                    dist.barrier()
                    self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
                    model.train()
                if (batch_idx + 1) % info_dict["accum_grad"] == 0:
                    self.step += 1
        dist.barrier()
        self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)

    def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
                           writer, info_dict, scaler, group_join):
        ''' Train one epoch
        '''

        lr = optimizer.param_groups[0]['lr']
        logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
        logging.info('using accumulate grad, new batch size is {} times'
                     ' larger than before'.format(info_dict['accum_grad']))
        # A context manager to be used in conjunction with an instance of
        # torch.nn.parallel.DistributedDataParallel to be able to train
        # with uneven inputs across participating processes.
        model.train()
        model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
        with model_context():
            for batch_idx, batch_dict in enumerate(train_data_loader):
                info_dict["tag"] = "TRAIN"
                info_dict["step"] = self.step
                info_dict["epoch"] = self.epoch
                info_dict["batch_idx"] = batch_idx
                if cosyvoice_join(group_join, info_dict):
                    break

                # Disable gradient synchronizations across DDP processes.
                # Within this context, gradients will be accumulated on module
                # variables, which will later be synchronized.
                if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
                    context = model.no_sync
                # Used for single gpu training and DDP gradient synchronization
                # processes.
                else:
                    context = nullcontext

                with context():
                    batch_dict['turn'] = 'discriminator'
                    info_dict = batch_forward(model, batch_dict, scaler, info_dict)
                    info_dict = batch_backward(model, scaler, info_dict)
                info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
                optimizer.zero_grad()
                log_per_step(writer, info_dict)
                with context():
                    batch_dict['turn'] = 'generator'
                    info_dict = batch_forward(model, batch_dict, scaler, info_dict)
                    info_dict = batch_backward(model, scaler, info_dict)
                info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
                optimizer_d.zero_grad()
                log_per_step(writer, info_dict)
                # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
                if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
                (batch_idx + 1) % info_dict["accum_grad"] == 0:
                    dist.barrier()
                    self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
                    model.train()
                if (batch_idx + 1) % info_dict["accum_grad"] == 0:
                    self.step += 1
        dist.barrier()
        self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)


    # def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
    #     ''' Train one epoch
    #     '''

    #     lr = optimizer.param_groups[0]['lr']
    #     logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
    #     logging.info('using accumulate grad, new batch size is {} times'
    #                  ' larger than before'.format(info_dict['accum_grad']))
    #     # A context manager to be used in conjunction with an instance of
    #     # torch.nn.parallel.DistributedDataParallel to be able to train
    #     # with uneven inputs across participating processes.
    #     model.train()
    #     if self.ref_model is not None:
    #         self.ref_model.eval()
    #     model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
    #     train_loader_iter = iter(train_data_loader)
    #     info_dict["tag"] = "TRAIN"
    #     info_dict["epoch"] = self.epoch
    #     with model_context():
    #         batch_idx = -1
    #         while True:
    #             batch_idx += 1
    #             data_exhausted_local = False
    #             try:
    #                 current_batch_dict = next(train_loader_iter)
    #             except StopIteration:
    #                 data_exhausted_local = True
    #             data_exhausted_global_signal = torch.tensor([int(data_exhausted_local)], dtype=torch.int, device=self.device)
    #             dist.all_reduce(data_exhausted_global_signal, op=dist.ReduceOp.MAX, group=group_join)
    #             if data_exhausted_global_signal.item() == 1:
    #                 break 
    #             batch_dict = current_batch_dict

    #             torch.cuda.empty_cache()
    #             info_dict["step"] = self.step
    #             info_dict["batch_idx"] = batch_idx
                
    #             # if cosyvoice_join(group_join, info_dict):
    #             #     break

    #             if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
    #                 context = model.no_sync
    #             else:
    #                 context = nullcontext

    #             with context():
    #                 info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model=self.ref_model, dpo_loss=self.dpo_loss)
    #                 info_dict = batch_backward(model, scaler, info_dict)

    #             info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
    #             log_per_step(writer, info_dict)
    #             if info_dict.get('save_per_step', 0) > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
    #                (batch_idx + 1) % info_dict["accum_grad"] == 0:
    #                 dist.barrier()
    #                 self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
    #                 model.train()
    #             if (batch_idx + 1) % info_dict["accum_grad"] == 0:
    #                 self.step += 1
    #     dist.barrier()
    #     self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
        
    def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
                           writer, info_dict, scaler, group_join):
        ''' Train one epoch
        '''

        lr = optimizer.param_groups[0]['lr']
        logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
        logging.info('using accumulate grad, new batch size is {} times'
                     ' larger than before'.format(info_dict['accum_grad']))
        # A context manager to be used in conjunction with an instance of
        # torch.nn.parallel.DistributedDataParallel to be able to train
        # with uneven inputs across participating processes.
        model.train()
        model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
        with model_context():
            for batch_idx, batch_dict in enumerate(train_data_loader):
                import pdb
                pdb.set_trace()
                info_dict["tag"] = "TRAIN"
                info_dict["step"] = self.step
                info_dict["epoch"] = self.epoch
                info_dict["batch_idx"] = batch_idx
                if cosyvoice_join(group_join, info_dict):
                    break

                # Disable gradient synchronizations across DDP processes.
                # Within this context, gradients will be accumulated on module
                # variables, which will later be synchronized.
                if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
                    context = model.no_sync
                # Used for single gpu training and DDP gradient synchronization
                # processes.
                else:
                    context = nullcontext

                with context():
                    batch_dict['turn'] = 'discriminator'
                    info_dict = batch_forward(model, batch_dict, scaler, info_dict)
                    info_dict = batch_backward(model, scaler, info_dict)
                info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
                optimizer.zero_grad()
                log_per_step(writer, info_dict)
                with context():
                    batch_dict['turn'] = 'generator'
                    info_dict = batch_forward(model, batch_dict, scaler, info_dict)
                    info_dict = batch_backward(model, scaler, info_dict)
                info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
                optimizer_d.zero_grad()
                log_per_step(writer, info_dict)
                # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
                if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
                   (batch_idx + 1) % info_dict["accum_grad"] == 0:
                    dist.barrier()
                    self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
                    model.train()
                if (batch_idx + 1) % info_dict["accum_grad"] == 0:
                    self.step += 1
        dist.barrier()
        self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)

    @torch.inference_mode()
    def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True):
        ''' Cross validation on
        '''
        logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
        model.eval()
        total_num_utts, total_loss_dict = 0, {}  # avoid division by 0
        for batch_idx, batch_dict in enumerate(cv_data_loader):
            info_dict["tag"] = "CV"
            info_dict["step"] = self.step
            info_dict["epoch"] = self.epoch
            info_dict["batch_idx"] = batch_idx

            num_utts = len(batch_dict["utts"])
            total_num_utts += num_utts

            if self.gan is True:
                batch_dict['turn'] = 'generator'
            info_dict = batch_forward(model, batch_dict, None, info_dict)

            for k, v in info_dict['loss_dict'].items():
                if k not in total_loss_dict:
                    total_loss_dict[k] = []
                total_loss_dict[k].append(v.mean().item() * num_utts)
            log_per_step(None, info_dict)
        for k, v in total_loss_dict.items():
            total_loss_dict[k] = sum(v) / total_num_utts
        info_dict['loss_dict'] = total_loss_dict
        log_per_save(writer, info_dict)
        model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
        save_model(model, model_name, info_dict)


    @torch.inference_mode()
    def generate(self, model, generate_data_loader, writer, info_dict, on_batch_end=True,hift=None, output_folder=None):
        ''' Cross validation on
        '''
        logging.info('Epoch {} Step {} on_batch_end {} Start Generating'.format(self.epoch, self.step + 1, on_batch_end))
        model.eval()
        total_num_utts, total_loss_dict = 0, {}  # avoid division by 0
        if output_folder==None:
            output_folder=info_dict['model_dir']
        for batch_idx, batch_dict in enumerate(generate_data_loader):
            print(batch_idx)
            info_dict["tag"] = "GENERATE"
            info_dict["step"] = self.step
            info_dict["epoch"] = self.epoch
            info_dict["batch_idx"] = batch_idx
            
            num_utts = len(batch_dict["utts"])
            total_num_utts += num_utts
            ref_wavs=batch_dict['wavs']
            speech_token=batch_dict['speech_token']
            speech_token_len=batch_dict['speech_token_len']
            speech_feat=batch_dict['speech_feat']
            speech_feat_len=batch_dict['speech_feat_len']
            speech_embedding=batch_dict['embedding']
            path=batch_dict['wavs'][0]
            name=os.path.splitext(os.path.basename(path))[0]
            random_ratios = torch.rand(1) * 0.5
            prompt_lengths = (speech_token_len.min().float() * random_ratios).int().to(speech_feat.device)
            prompt_token=speech_token[:,:prompt_lengths]
            input_token=speech_token[:,prompt_lengths:]
            input_token_len=speech_token_len-prompt_lengths
            prompt_token_len=speech_token_len-input_token_len
            prompt_feat_lengths=prompt_lengths*model.module.token_mel_ratio
            input_feat_len=speech_feat_len-prompt_feat_lengths
            prompt_feat_len=speech_feat_len-input_feat_len
            input_feat=speech_feat[:,prompt_feat_lengths:]
            prompt_feat=speech_feat[:,:prompt_feat_lengths]
            device=model.module.encoder_proj.weight.device
            mel=model.module.inference(input_token.to(device),input_token_len.to(device),prompt_token.to(device),prompt_token_len.to(device),prompt_feat.to(device),prompt_feat_len.to(device),speech_embedding.to(device),streaming=True,finalize=True)[0]
            mel=torch.cat([prompt_feat.to(mel.device).transpose(-1,-2),mel],dim=-1)
            gen_speech=hift.inference(mel)[0]
            ref_audio_source_path = ref_wavs[0]
            dataset_name = get_dataset_name_from_path(ref_audio_source_path)
            ref_audio_output_dir = os.path.join(output_folder, 'ref', dataset_name)
            os.makedirs(ref_audio_output_dir, exist_ok=True)
            ref_audio_dest_path = os.path.join(ref_audio_output_dir, f'{name}.wav')
            if not os.path.exists(ref_audio_dest_path):
                if ref_audio_source_path.lower().endswith('.wav'):
                    shutil.copy(ref_audio_source_path, ref_audio_dest_path)
                else:
                    waveform, sample_rate = torchaudio.load(ref_audio_source_path)
                    torchaudio.save(ref_audio_dest_path, waveform, sample_rate)
            generate_audio_output_dir = os.path.join(output_folder, 'generate', dataset_name)
            os.makedirs(generate_audio_output_dir, exist_ok=True)
            generated_audio_path = os.path.join(generate_audio_output_dir, f'{name}.wav')
            torchaudio.save(generated_audio_path, gen_speech.cpu(), 24000)
            
        #     if self.gan is True:
        #         batch_dict['turn'] = 'generator'
        #     info_dict = batch_forward(model, batch_dict, None, info_dict)

        #     for k, v in info_dict['loss_dict'].items():
        #         if k not in total_loss_dict:
        #             total_loss_dict[k] = []
        #         total_loss_dict[k].append(v.mean().item() * num_utts)
        #     log_per_step(None, info_dict)
        # for k, v in total_loss_dict.items():
        #     total_loss_dict[k] = sum(v) / total_num_utts
        # info_dict['loss_dict'] = total_loss_dict
        # log_per_save(writer, info_dict)
        # model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
        # save_model(model, model_name, info_dict)