Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,976 Bytes
f5abf67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
# 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import logging
from contextlib import nullcontext
import os
import torchaudio
import torch
import torch.distributed as dist
import torchaudio
from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
import datetime
import sys
from datetime import timedelta
sys.path.append('/inspire/hdd/project/embodied-multimodality/public/lzjjin/CosyVoice/cosyvoice/utils')
from file_utils import get_dataset_name_from_path
class Executor:
def __init__(self, gan: bool = False, ref_model: torch.nn.Module = None, dpo_loss: torch.nn.Module = None):
self.gan = gan
self.ref_model = ref_model
self.dpo_loss = dpo_loss
self.step = 0
self.epoch = 0
self.validate_interval=None
self.rank = int(os.environ.get('RANK', 0))
self.device = torch.device('cuda:{}'.format(self.rank))
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
''' Train one epoch
'''
lr = optimizer.param_groups[0]['lr']
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
logging.info('using accumulate grad, new batch size is {} times'
' larger than before'.format(info_dict['accum_grad']))
# A context manager to be used in conjunction with an instance of
# torch.nn.parallel.DistributedDataParallel to be able to train
# with uneven inputs across participating processes.
model.train()
if self.ref_model is not None:
self.ref_model.eval()
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
with model_context():
for batch_idx, batch_dict in enumerate(train_data_loader):
info_dict["tag"] = "TRAIN"
info_dict["step"] = self.step
info_dict["epoch"] = self.epoch
info_dict["batch_idx"] = batch_idx
if cosyvoice_join(group_join, info_dict):
break
# Disable gradient synchronizations across DDP processes.
# Within this context, gradients will be accumulated on module
# variables, which will later be synchronized.
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
context = model.no_sync
# Used for single gpu training and DDP gradient synchronization
# processes.
else:
context = nullcontext
with context():
info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model=self.ref_model, dpo_loss=self.dpo_loss)
info_dict = batch_backward(model, scaler, info_dict)
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
log_per_step(writer, info_dict)
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
(batch_idx + 1) % info_dict["accum_grad"] == 0:
dist.barrier()
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
model.train()
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
self.step += 1
dist.barrier()
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
writer, info_dict, scaler, group_join):
''' Train one epoch
'''
lr = optimizer.param_groups[0]['lr']
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
logging.info('using accumulate grad, new batch size is {} times'
' larger than before'.format(info_dict['accum_grad']))
# A context manager to be used in conjunction with an instance of
# torch.nn.parallel.DistributedDataParallel to be able to train
# with uneven inputs across participating processes.
model.train()
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
with model_context():
for batch_idx, batch_dict in enumerate(train_data_loader):
info_dict["tag"] = "TRAIN"
info_dict["step"] = self.step
info_dict["epoch"] = self.epoch
info_dict["batch_idx"] = batch_idx
if cosyvoice_join(group_join, info_dict):
break
# Disable gradient synchronizations across DDP processes.
# Within this context, gradients will be accumulated on module
# variables, which will later be synchronized.
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
context = model.no_sync
# Used for single gpu training and DDP gradient synchronization
# processes.
else:
context = nullcontext
with context():
batch_dict['turn'] = 'discriminator'
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
info_dict = batch_backward(model, scaler, info_dict)
info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
optimizer.zero_grad()
log_per_step(writer, info_dict)
with context():
batch_dict['turn'] = 'generator'
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
info_dict = batch_backward(model, scaler, info_dict)
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
optimizer_d.zero_grad()
log_per_step(writer, info_dict)
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
(batch_idx + 1) % info_dict["accum_grad"] == 0:
dist.barrier()
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
model.train()
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
self.step += 1
dist.barrier()
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
# def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
# ''' Train one epoch
# '''
# lr = optimizer.param_groups[0]['lr']
# logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
# logging.info('using accumulate grad, new batch size is {} times'
# ' larger than before'.format(info_dict['accum_grad']))
# # A context manager to be used in conjunction with an instance of
# # torch.nn.parallel.DistributedDataParallel to be able to train
# # with uneven inputs across participating processes.
# model.train()
# if self.ref_model is not None:
# self.ref_model.eval()
# model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
# train_loader_iter = iter(train_data_loader)
# info_dict["tag"] = "TRAIN"
# info_dict["epoch"] = self.epoch
# with model_context():
# batch_idx = -1
# while True:
# batch_idx += 1
# data_exhausted_local = False
# try:
# current_batch_dict = next(train_loader_iter)
# except StopIteration:
# data_exhausted_local = True
# data_exhausted_global_signal = torch.tensor([int(data_exhausted_local)], dtype=torch.int, device=self.device)
# dist.all_reduce(data_exhausted_global_signal, op=dist.ReduceOp.MAX, group=group_join)
# if data_exhausted_global_signal.item() == 1:
# break
# batch_dict = current_batch_dict
# torch.cuda.empty_cache()
# info_dict["step"] = self.step
# info_dict["batch_idx"] = batch_idx
# # if cosyvoice_join(group_join, info_dict):
# # break
# if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
# context = model.no_sync
# else:
# context = nullcontext
# with context():
# info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model=self.ref_model, dpo_loss=self.dpo_loss)
# info_dict = batch_backward(model, scaler, info_dict)
# info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
# log_per_step(writer, info_dict)
# if info_dict.get('save_per_step', 0) > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
# (batch_idx + 1) % info_dict["accum_grad"] == 0:
# dist.barrier()
# self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
# model.train()
# if (batch_idx + 1) % info_dict["accum_grad"] == 0:
# self.step += 1
# dist.barrier()
# self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
writer, info_dict, scaler, group_join):
''' Train one epoch
'''
lr = optimizer.param_groups[0]['lr']
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
logging.info('using accumulate grad, new batch size is {} times'
' larger than before'.format(info_dict['accum_grad']))
# A context manager to be used in conjunction with an instance of
# torch.nn.parallel.DistributedDataParallel to be able to train
# with uneven inputs across participating processes.
model.train()
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
with model_context():
for batch_idx, batch_dict in enumerate(train_data_loader):
import pdb
pdb.set_trace()
info_dict["tag"] = "TRAIN"
info_dict["step"] = self.step
info_dict["epoch"] = self.epoch
info_dict["batch_idx"] = batch_idx
if cosyvoice_join(group_join, info_dict):
break
# Disable gradient synchronizations across DDP processes.
# Within this context, gradients will be accumulated on module
# variables, which will later be synchronized.
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
context = model.no_sync
# Used for single gpu training and DDP gradient synchronization
# processes.
else:
context = nullcontext
with context():
batch_dict['turn'] = 'discriminator'
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
info_dict = batch_backward(model, scaler, info_dict)
info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
optimizer.zero_grad()
log_per_step(writer, info_dict)
with context():
batch_dict['turn'] = 'generator'
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
info_dict = batch_backward(model, scaler, info_dict)
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
optimizer_d.zero_grad()
log_per_step(writer, info_dict)
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
(batch_idx + 1) % info_dict["accum_grad"] == 0:
dist.barrier()
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
model.train()
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
self.step += 1
dist.barrier()
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
@torch.inference_mode()
def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True):
''' Cross validation on
'''
logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
model.eval()
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
for batch_idx, batch_dict in enumerate(cv_data_loader):
info_dict["tag"] = "CV"
info_dict["step"] = self.step
info_dict["epoch"] = self.epoch
info_dict["batch_idx"] = batch_idx
num_utts = len(batch_dict["utts"])
total_num_utts += num_utts
if self.gan is True:
batch_dict['turn'] = 'generator'
info_dict = batch_forward(model, batch_dict, None, info_dict)
for k, v in info_dict['loss_dict'].items():
if k not in total_loss_dict:
total_loss_dict[k] = []
total_loss_dict[k].append(v.mean().item() * num_utts)
log_per_step(None, info_dict)
for k, v in total_loss_dict.items():
total_loss_dict[k] = sum(v) / total_num_utts
info_dict['loss_dict'] = total_loss_dict
log_per_save(writer, info_dict)
model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
save_model(model, model_name, info_dict)
@torch.inference_mode()
def generate(self, model, generate_data_loader, writer, info_dict, on_batch_end=True,hift=None, output_folder=None):
''' Cross validation on
'''
logging.info('Epoch {} Step {} on_batch_end {} Start Generating'.format(self.epoch, self.step + 1, on_batch_end))
model.eval()
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
if output_folder==None:
output_folder=info_dict['model_dir']
for batch_idx, batch_dict in enumerate(generate_data_loader):
print(batch_idx)
info_dict["tag"] = "GENERATE"
info_dict["step"] = self.step
info_dict["epoch"] = self.epoch
info_dict["batch_idx"] = batch_idx
num_utts = len(batch_dict["utts"])
total_num_utts += num_utts
ref_wavs=batch_dict['wavs']
speech_token=batch_dict['speech_token']
speech_token_len=batch_dict['speech_token_len']
speech_feat=batch_dict['speech_feat']
speech_feat_len=batch_dict['speech_feat_len']
speech_embedding=batch_dict['embedding']
path=batch_dict['wavs'][0]
name=os.path.splitext(os.path.basename(path))[0]
random_ratios = torch.rand(1) * 0.5
prompt_lengths = (speech_token_len.min().float() * random_ratios).int().to(speech_feat.device)
prompt_token=speech_token[:,:prompt_lengths]
input_token=speech_token[:,prompt_lengths:]
input_token_len=speech_token_len-prompt_lengths
prompt_token_len=speech_token_len-input_token_len
prompt_feat_lengths=prompt_lengths*model.module.token_mel_ratio
input_feat_len=speech_feat_len-prompt_feat_lengths
prompt_feat_len=speech_feat_len-input_feat_len
input_feat=speech_feat[:,prompt_feat_lengths:]
prompt_feat=speech_feat[:,:prompt_feat_lengths]
device=model.module.encoder_proj.weight.device
mel=model.module.inference(input_token.to(device),input_token_len.to(device),prompt_token.to(device),prompt_token_len.to(device),prompt_feat.to(device),prompt_feat_len.to(device),speech_embedding.to(device),streaming=True,finalize=True)[0]
mel=torch.cat([prompt_feat.to(mel.device).transpose(-1,-2),mel],dim=-1)
gen_speech=hift.inference(mel)[0]
ref_audio_source_path = ref_wavs[0]
dataset_name = get_dataset_name_from_path(ref_audio_source_path)
ref_audio_output_dir = os.path.join(output_folder, 'ref', dataset_name)
os.makedirs(ref_audio_output_dir, exist_ok=True)
ref_audio_dest_path = os.path.join(ref_audio_output_dir, f'{name}.wav')
if not os.path.exists(ref_audio_dest_path):
if ref_audio_source_path.lower().endswith('.wav'):
shutil.copy(ref_audio_source_path, ref_audio_dest_path)
else:
waveform, sample_rate = torchaudio.load(ref_audio_source_path)
torchaudio.save(ref_audio_dest_path, waveform, sample_rate)
generate_audio_output_dir = os.path.join(output_folder, 'generate', dataset_name)
os.makedirs(generate_audio_output_dir, exist_ok=True)
generated_audio_path = os.path.join(generate_audio_output_dir, f'{name}.wav')
torchaudio.save(generated_audio_path, gen_speech.cpu(), 24000)
# if self.gan is True:
# batch_dict['turn'] = 'generator'
# info_dict = batch_forward(model, batch_dict, None, info_dict)
# for k, v in info_dict['loss_dict'].items():
# if k not in total_loss_dict:
# total_loss_dict[k] = []
# total_loss_dict[k].append(v.mean().item() * num_utts)
# log_per_step(None, info_dict)
# for k, v in total_loss_dict.items():
# total_loss_dict[k] = sum(v) / total_num_utts
# info_dict['loss_dict'] = total_loss_dict
# log_per_save(writer, info_dict)
# model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
# save_model(model, model_name, info_dict) |