Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from __future__ import print_function | |
| import argparse | |
| import logging | |
| logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
| import torch | |
| from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2 | |
| from cosyvoice.utils.file_utils import logging | |
| def get_args(): | |
| parser = argparse.ArgumentParser(description='export your model for deployment') | |
| parser.add_argument('--model_dir', | |
| type=str, | |
| default='pretrained_models/CosyVoice-300M', | |
| help='local path') | |
| args = parser.parse_args() | |
| print(args) | |
| return args | |
| def get_optimized_script(model, preserved_attrs=[]): | |
| script = torch.jit.script(model) | |
| if preserved_attrs != []: | |
| script = torch.jit.freeze(script, preserved_attrs=preserved_attrs) | |
| else: | |
| script = torch.jit.freeze(script) | |
| script = torch.jit.optimize_for_inference(script) | |
| return script | |
| def main(): | |
| args = get_args() | |
| logging.basicConfig(level=logging.DEBUG, | |
| format='%(asctime)s %(levelname)s %(message)s') | |
| torch._C._jit_set_fusion_strategy([('STATIC', 1)]) | |
| torch._C._jit_set_profiling_mode(False) | |
| torch._C._jit_set_profiling_executor(False) | |
| try: | |
| model = CosyVoice(args.model_dir) | |
| except Exception: | |
| try: | |
| model = CosyVoice2(args.model_dir) | |
| except Exception: | |
| raise TypeError('no valid model_type!') | |
| if not isinstance(model, CosyVoice2): | |
| # 1. export llm text_encoder | |
| llm_text_encoder = model.model.llm.text_encoder | |
| script = get_optimized_script(llm_text_encoder) | |
| script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir)) | |
| script = get_optimized_script(llm_text_encoder.half()) | |
| script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir)) | |
| logging.info('successfully export llm_text_encoder') | |
| # 2. export llm llm | |
| llm_llm = model.model.llm.llm | |
| script = get_optimized_script(llm_llm, ['forward_chunk']) | |
| script.save('{}/llm.llm.fp32.zip'.format(args.model_dir)) | |
| script = get_optimized_script(llm_llm.half(), ['forward_chunk']) | |
| script.save('{}/llm.llm.fp16.zip'.format(args.model_dir)) | |
| logging.info('successfully export llm_llm') | |
| # 3. export flow encoder | |
| flow_encoder = model.model.flow.encoder | |
| script = get_optimized_script(flow_encoder) | |
| script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir)) | |
| script = get_optimized_script(flow_encoder.half()) | |
| script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir)) | |
| logging.info('successfully export flow_encoder') | |
| else: | |
| # 3. export flow encoder | |
| flow_encoder = model.model.flow.encoder | |
| script = get_optimized_script(flow_encoder) | |
| script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir)) | |
| script = get_optimized_script(flow_encoder.half()) | |
| script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir)) | |
| logging.info('successfully export flow_encoder') | |
| if __name__ == '__main__': | |
| main() | |