Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| try: | |
| from torch.nn.utils.parametrizations import weight_norm, spectral_norm | |
| except ImportError: | |
| from torch.nn.utils import weight_norm, spectral_norm | |
| from typing import List, Optional, Tuple | |
| from einops import rearrange | |
| from torchaudio.transforms import Spectrogram | |
| LRELU_SLOPE = 0.1 | |
| class MultipleDiscriminator(nn.Module): | |
| def __init__( | |
| self, mpd: nn.Module, mrd: nn.Module | |
| ): | |
| super().__init__() | |
| self.mpd = mpd | |
| self.mrd = mrd | |
| def forward(self, y: torch.Tensor, y_hat: torch.Tensor): | |
| y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] | |
| this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1)) | |
| y_d_rs += this_y_d_rs | |
| y_d_gs += this_y_d_gs | |
| fmap_rs += this_fmap_rs | |
| fmap_gs += this_fmap_gs | |
| this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat) | |
| y_d_rs += this_y_d_rs | |
| y_d_gs += this_y_d_gs | |
| fmap_rs += this_fmap_rs | |
| fmap_gs += this_fmap_gs | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class MultiResolutionDiscriminator(nn.Module): | |
| def __init__( | |
| self, | |
| fft_sizes: Tuple[int, ...] = (2048, 1024, 512), | |
| num_embeddings: Optional[int] = None, | |
| ): | |
| """ | |
| Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec. | |
| Additionally, it allows incorporating conditional information with a learned embeddings table. | |
| Args: | |
| fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512). | |
| num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator. | |
| Defaults to None. | |
| """ | |
| super().__init__() | |
| self.discriminators = nn.ModuleList( | |
| [DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes] | |
| ) | |
| def forward( | |
| self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None | |
| ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for d in self.discriminators: | |
| y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) | |
| y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class DiscriminatorR(nn.Module): | |
| def __init__( | |
| self, | |
| window_length: int, | |
| num_embeddings: Optional[int] = None, | |
| channels: int = 32, | |
| hop_factor: float = 0.25, | |
| bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)), | |
| ): | |
| super().__init__() | |
| self.window_length = window_length | |
| self.hop_factor = hop_factor | |
| self.spec_fn = Spectrogram( | |
| n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None | |
| ) | |
| n_fft = window_length // 2 + 1 | |
| bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] | |
| self.bands = bands | |
| convs = lambda: nn.ModuleList( | |
| [ | |
| weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), | |
| weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), | |
| weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), | |
| weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), | |
| weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))), | |
| ] | |
| ) | |
| self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) | |
| if num_embeddings is not None: | |
| self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) | |
| torch.nn.init.zeros_(self.emb.weight) | |
| self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))) | |
| def spectrogram(self, x): | |
| # Remove DC offset | |
| x = x - x.mean(dim=-1, keepdims=True) | |
| # Peak normalize the volume of input audio | |
| x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) | |
| x = self.spec_fn(x) | |
| x = torch.view_as_real(x) | |
| x = rearrange(x, "b f t c -> b c t f") | |
| # Split into bands | |
| x_bands = [x[..., b[0]: b[1]] for b in self.bands] | |
| return x_bands | |
| def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None): | |
| x_bands = self.spectrogram(x) | |
| fmap = [] | |
| x = [] | |
| for band, stack in zip(x_bands, self.band_convs): | |
| for i, layer in enumerate(stack): | |
| band = layer(band) | |
| band = torch.nn.functional.leaky_relu(band, 0.1) | |
| if i > 0: | |
| fmap.append(band) | |
| x.append(band) | |
| x = torch.cat(x, dim=-1) | |
| if cond_embedding_id is not None: | |
| emb = self.emb(cond_embedding_id) | |
| h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) | |
| else: | |
| h = 0 | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x += h | |
| return x, fmap | |
| class MultiResSpecDiscriminator(torch.nn.Module): | |
| def __init__(self, | |
| fft_sizes=[1024, 2048, 512], | |
| hop_sizes=[120, 240, 50], | |
| win_lengths=[600, 1200, 240], | |
| window="hann_window"): | |
| super(MultiResSpecDiscriminator, self).__init__() | |
| self.discriminators = nn.ModuleList([ | |
| SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window), | |
| SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window), | |
| SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)]) | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for _, d in enumerate(self.discriminators): | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| def stft(x, fft_size, hop_size, win_length, window): | |
| """Perform STFT and convert to magnitude spectrogram. | |
| Args: | |
| x (Tensor): Input signal tensor (B, T). | |
| fft_size (int): FFT size. | |
| hop_size (int): Hop size. | |
| win_length (int): Window length. | |
| window (str): Window function type. | |
| Returns: | |
| Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). | |
| """ | |
| x_stft = torch.stft(x, fft_size, hop_size, win_length, window, return_complex=True) | |
| # NOTE(kan-bayashi): clamp is needed to avoid nan or inf | |
| return torch.abs(x_stft).transpose(2, 1) | |
| class SpecDiscriminator(nn.Module): | |
| """docstring for Discriminator.""" | |
| def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False): | |
| super(SpecDiscriminator, self).__init__() | |
| norm_f = weight_norm if use_spectral_norm is False else spectral_norm | |
| self.fft_size = fft_size | |
| self.shift_size = shift_size | |
| self.win_length = win_length | |
| self.window = getattr(torch, window)(win_length) | |
| self.discriminators = nn.ModuleList([ | |
| norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), | |
| norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), | |
| norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), | |
| norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), | |
| norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))), | |
| ]) | |
| self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1)) | |
| def forward(self, y): | |
| fmap = [] | |
| y = y.squeeze(1) | |
| y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.device)) | |
| y = y.unsqueeze(1) | |
| for _, d in enumerate(self.discriminators): | |
| y = d(y) | |
| y = F.leaky_relu(y, LRELU_SLOPE) | |
| fmap.append(y) | |
| y = self.out(y) | |
| fmap.append(y) | |
| return torch.flatten(y, 1, -1), fmap | |