MOSS-Speech / utils /interface.py
singularitys0's picture
fix
6bb8448
import spaces
import gradio as gr
gr.processing_utils._check_allowed = lambda path, allowed_paths: True
import io
import os
import time
import uuid
import traceback
import soundfile as sf
import torchaudio
import torch
from transformers import AutoModel, AutoProcessor, GenerationConfig, StoppingCriteria
from dataclasses import astuple
import sys
class MIMOStopper(StoppingCriteria):
def __init__(self, stop_id: int) -> None:
super().__init__()
self.stop_id = stop_id
def __call__(self, input_ids: torch.LongTensor, scores) -> bool:
# Stop when last token of channel 0 is the stop token
return input_ids[0, -1].item() == self.stop_id
class Inference:
def __init__(self, model_path, codec_path=None, device='cuda'):
self.device = device
self.processor = AutoProcessor.from_pretrained(
model_path,
codec_path=codec_path if codec_path else "fnlp/MOSS-Speech",
device=self.device,
trust_remote_code=True,
)
self.model = AutoModel.from_pretrained(
model_path, trust_remote_code=True
).to(self.device).eval()
def forward(
self,
task: str,
conversation_history_for_model: list, # Pass the entire conversation history formatted for the model
temperature: float,
top_p: float,
repetition_penalty: float,
max_new_tokens: int,
min_new_tokens: int,
top_k: int,
system_prompt: str,
decoder_audio_prompt_path: str = None
):
# Prepare the conversation for the processor
full_conversation = []
if system_prompt:
full_conversation.append({"role": "system", "content": system_prompt})
# Add previous turns from the formatted history
full_conversation.extend(conversation_history_for_model)
output_modalities = []
if task.endswith("speech_response"):
output_modalities.append('audio')
if task.endswith("text_response"):
output_modalities.append('text')
# This should always be exactly one modality based on task
if len(output_modalities) != 1:
raise ValueError("Expected exactly one output modality based on task.")
stopping_criteria = [
MIMOStopper(self.processor.tokenizer.pad_token_id),
MIMOStopper(
self.processor.tokenizer.convert_tokens_to_ids("<|im_end|>"),
),
]
generate_kwargs = {
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_new_tokens": max_new_tokens,
"min_new_tokens": min_new_tokens,
"do_sample": True, # Always true for these parameters
"use_cache": True,
"top_k": top_k,
}
generation_config = GenerationConfig(**generate_kwargs)
@spaces.GPU(duration = 120)
def gen_spaces():
inputs = self.processor([full_conversation], output_modalities)
token_ids = self.model.generate(
input_ids=inputs["input_ids"].to(self.device),
attention_mask=inputs["attention_mask"].to(self.device),
generation_config=generation_config,
stopping_criteria=stopping_criteria
)
print(f"{token_ids.tolist()=}")
results = self.processor.decode(
token_ids.to(self.device),
output_modalities,
decoder_audio_prompt_path=decoder_audio_prompt_path
)
return results
results = gen_spaces()
# As per requirement, always one output modality, so take the first result
response_obj = results[0]
text_out = None
audio_out = None
if output_modalities[0] == 'audio':
audio_out = (response_obj.sampling_rate, response_obj.audio.squeeze(0).cpu().numpy()) if response_obj.audio is not None else None
elif output_modalities[0] == 'text':
text_out = response_obj.generated_text if response_obj.generated_text is not None else None
# Clean up temporary user audio file if it was created (only temporary for processor)
# if temp_user_audio_path and os.path.exists(temp_user_audio_path):
# os.remove(temp_user_audio_path)
return text_out, audio_out
class MIMOInterface:
def __init__(self, model_path):
self.inference = Inference(model_path, codec_path="fnlp/MOSS-Speech-Codec")
self.audio_dir = "chat_audio"
os.makedirs(self.audio_dir, exist_ok=True)
self.default_decoder_audio_prompt_path = "assets/prompt_cn.wav"
# ---------- Helpers ----------
def get_system_prompt_default(self, task):
if task.endswith("speech_response"):
return "You are a helpful voice assistant. Answer the user's questions with spoken responses."
elif task.endswith("text_response"):
return "You are a helpful assistant. Answer the user's questions with text."
else:
return "You are a helpful assistant."
def _unique_wav_path(self, prefix: str) -> str:
return os.path.join(self.audio_dir, f"{prefix}_{int(time.time()*1000)}_{uuid.uuid4().hex[:8]}.wav")
def _save_audio_numpy(self, audio_np_tuple, prefix="audio") -> str:
"""
audio_np_tuple: (sample_rate, np.ndarray)
Returns local .wav path.
"""
if audio_np_tuple is None:
return ""
sr, arr = audio_np_tuple
if len(arr.shape) > 1:
arr = arr[:, 0] # Ensure mono
path = self._unique_wav_path(prefix)
sf.write(path, arr, sr, format="WAV")
return path
def _delete_audio_files(self, file_paths: list):
"""Deletes a list of audio files."""
for path in file_paths:
if os.path.exists(path) and os.path.isfile(path):
try:
os.remove(path)
except Exception as e:
print(f"Error deleting audio file {path}: {e}")
# ---------- Core inference + chat sync ----------
def process_input(
self,
audio_input,
text_input,
mode,
temperature,
top_p,
repetition_penalty,
max_new_tokens,
min_new_tokens,
top_k,
system_prompt,
history_state_tuple, # (chatbot_messages, audio_file_paths_to_delete, conversation_for_model)
decoder_audio_prompt # numpy tuple from gradio audio component
):
chatbot_messages, audio_file_paths_to_delete, conversation_for_model = history_state_tuple
# Keep a copy of the state before any changes in case of warning/error
original_chatbot_messages = list(chatbot_messages)
original_audio_file_paths_to_delete = list(audio_file_paths_to_delete)
original_conversation_for_model = list(conversation_for_model)
# new_chatbot_message = []
try:
# --- Handle Decoder Audio Prompt ---
decoder_audio_prompt_path_for_model = None
if decoder_audio_prompt:
saved_decoder_audio_path = self._save_audio_numpy(decoder_audio_prompt, prefix="decoder_prompt")
audio_file_paths_to_delete.append(saved_decoder_audio_path)
decoder_audio_prompt_path_for_model = saved_decoder_audio_path
else:
decoder_audio_prompt_path_for_model = self.default_decoder_audio_prompt_path
# --- Prepare User Input for Model and Display ---
user_display_message_content = ""
user_audio_path_display = None
current_user_turn_for_model = None
if mode.startswith("speech_instruct"):
if audio_input is None:
gr.Warning("Speech Input mode requires an audio input.")
return original_chatbot_messages[-1][1][0] if original_chatbot_messages else "", None, original_chatbot_messages, history_state_tuple # Return previous state
else:
user_audio_path_display = self._save_audio_numpy(audio_input, prefix="user")
audio_file_paths_to_delete.append(user_audio_path_display)
user_display_message_content = "🎀 Voice message" # Consistent text for speech input
buffer = io.BytesIO()
sf.write(buffer, audio_input[1], audio_input[0], format="WAV")
buffer.seek(0)
current_user_turn_for_model = {"role": "user", "content": {'path': user_audio_path_display, 'type': 'audio/wav'}}
else: # Text instruct modes
txt = (text_input or "").strip()
if not txt:
gr.Warning("Text Input mode requires a text input.")
return original_chatbot_messages[-1][1][0] if original_chatbot_messages else "", None, original_chatbot_messages, history_state_tuple # Return previous state
else:
user_display_message_content = txt
current_user_turn_for_model = {"role": "user", "content": user_display_message_content}
# Add user input to chatbot messages and model's conversation history
# Always add a single entry for user turn in chatbot_messages
if user_audio_path_display:
# chatbot_messages.append([user_display_message_content, None])
# new_chatbot_message.append([None, gr.Audio(user_audio_path_display, type='audio/wav')])
chatbot_messages.append({'role': 'user', 'content': {'path': user_audio_path_display}})
else:
chatbot_messages.append({'role': 'user', 'content': user_display_message_content})
if current_user_turn_for_model:
conversation_for_model.append(current_user_turn_for_model)
# --- Run Inference ---
text_out, audio_out = self.inference.forward(
task=mode,
conversation_history_for_model=conversation_for_model,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
min_new_tokens=min_new_tokens,
top_k=top_k,
system_prompt=system_prompt,
decoder_audio_prompt_path=decoder_audio_prompt_path_for_model
)
# --- Process Assistant Output for Display and Model History ---
assistant_response_for_model_content = None # This will be string or dict for model history
final_text_output_panel = None
assistant_audio_output_panel = None
# Assistant text for display/chatbot
assistant_text_display = None
assistant_audio_path_display = None
if mode.endswith("speech_response"):
if audio_out is None:
gr.Warning("Model failed to generate speech response.")
# Restore original history state if generation failed
return original_chatbot_messages[-1][1][0] if original_chatbot_messages else "", None, original_chatbot_messages, (original_chatbot_messages, original_audio_file_paths_to_delete, original_conversation_for_model)
assistant_audio_output_panel = audio_out
saved_assistant_audio_path = self._save_audio_numpy(audio_out, prefix="assistant")
audio_file_paths_to_delete.append(saved_assistant_audio_path)
assistant_audio_path_display = saved_assistant_audio_path
# Chatbot message for speech response mode
# The text part is usually not needed, but can be a placeholder or empty
# chatbot_messages.append(["πŸ”Š Generated speech.", None])
# new_chatbot_message.append([None, gr.Audio(assistant_audio_path_display, type="filepath")])
chatbot_messages.append({'role': 'assistant', 'content': {'path': assistant_audio_path_display}})
assistant_response_for_model_content = {'path': saved_assistant_audio_path, 'type': 'filepath'}
elif mode.endswith("text_response"):
if text_out is None or str(text_out).strip() == "":
gr.Warning("Model failed to generate text response.")
# Restore original history state if generation failed
return original_chatbot_messages[-1][1][0] if original_chatbot_messages else "", None, original_chatbot_messages, (original_chatbot_messages, original_audio_file_paths_to_delete, original_conversation_for_model)
final_text_output_panel = text_out
assistant_text_display = text_out
# Chatbot message for text response mode
chatbot_messages.append({'role': 'assistant', 'content': assistant_text_display})
assistant_response_for_model_content = text_out
# Add assistant's actual response to the conversation for the next model turn
if assistant_response_for_model_content:
conversation_for_model.append({"role": "assistant", "content": assistant_response_for_model_content})
# Return updated history state tuple
new_history_state_tuple = (chatbot_messages, audio_file_paths_to_delete, conversation_for_model)
# Return panel outputs + chat + state
return final_text_output_panel, assistant_audio_output_panel, chatbot_messages, new_history_state_tuple
except Exception as e:
traceback.print_exc()
err = f"Error: {str(e)}"
gr.Error(f"An unexpected error occurred: {err}")
# Restore original history state on any unhandled exception
return original_chatbot_messages[-1][0] if original_chatbot_messages else "", None, original_chatbot_messages, (original_chatbot_messages, original_audio_file_paths_to_delete, original_conversation_for_model)
def _submit_with_clear(
self, audio_in, text_in, mode, temperature, top_p, repetition_penalty, max_new_tokens, min_new_tokens, top_k,
system_prompt, history_state, decoder_audio_prompt, clear_on_submit
):
if clear_on_submit:
_, audio_files, _ = history_state
self._delete_audio_files(audio_files)
history_state = ([], [], [])
return self.process_input(
audio_in, text_in, mode, temperature, top_p, repetition_penalty,
max_new_tokens, min_new_tokens, top_k, system_prompt,
history_state, decoder_audio_prompt
)
# ---------- UI factory ----------
def create_interface(self):
theme = gr.themes.Soft()
with gr.Blocks(theme=theme) as demo:
gr.HTML(
"""
<div class="main-header">
<h1>🎀 MOSS-Speech Demo</h1>
</div>
"""
)
mode = gr.Radio(
[
("Speech In β†’ Speech Out", "speech_instruct_speech_response"),
("Speech In β†’ Text Out", "speech_instruct_text_response"),
("Text In β†’ Speech Out", "text_instruct_speech_response"),
("Text In β†’ Text Out", "text_instruct_text_response"),
],
label="🎯 Interaction Mode",
value="speech_instruct_speech_response",
container=True,
scale=1,
)
system_prompt = gr.Textbox(
label="πŸ€– System Prompt",
value=self.get_system_prompt_default("speech_instruct_speech_response"),
lines=2,
container=True,
scale=1,
)
with gr.Accordion("βš™οΈ Generation Parameters", open=False, elem_classes="param-accordion"):
with gr.Row():
temperature = gr.Slider(0.1, 2.0, value=0.6, step=0.1, label="🌑️ Temperature", info="Higher = more random")
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="🎯 Top-p", info="Nucleus sampling")
top_k = gr.Slider(1, 100, value=20, step=1, label="πŸ” Top-k", info="Candidate tokens")
with gr.Row():
repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="πŸ”„ Repetition Penalty", info="Discourage repeats")
max_new_tokens = gr.Slider(1, 2000, value=500, step=1, label="πŸ“ Max New Tokens", info="Upper bound")
min_new_tokens = gr.Slider(0, 100, value=0, step=1, label="πŸ“ Min New Tokens", info="Lower bound")
decoder_audio_prompt = gr.Audio(type="numpy", label="πŸŽ™οΈ Decoder Audio Prompt (Optional)", visible=True)
with gr.Row():
with gr.Column(scale=1, elem_classes="input-section"):
gr.Markdown("### πŸ“₯ Input")
audio_input = gr.Audio(type="numpy", label="πŸŽ™οΈ Speech Input", visible=True)
text_input = gr.Textbox(
label="🧾 Text Input",
placeholder="Type your question here…",
lines=3,
info="Enter text to query the assistant",
visible=False,
)
with gr.Column(scale=1, elem_classes="output-section"):
gr.Markdown("### πŸ“€ Output")
text_output = gr.Textbox(
label="πŸ“„ Text Output",
lines=8,
interactive=False,
info="Model-generated text response",
visible=False,
)
audio_output = gr.Audio(label="πŸ”Š Speech Output", visible=True, autoplay=True)
with gr.Row():
submit_btn = gr.Button("πŸš€ Submit", variant="primary", elem_classes="btn-primary")
clear_history_btn = gr.Button("πŸ—‘οΈ Clear All History", variant="secondary", elem_classes="btn-secondary")
with gr.Row():
clear_history_on_mode_change_checkbox = gr.Checkbox(
label="Clear history on mode change", value=True, interactive=True
)
clear_history_on_submit_checkbox = gr.Checkbox(
label="Clear history on each submit", value=False, interactive=True
)
# history_state will now be a tuple: (chatbot_messages, audio_file_paths_to_delete, conversation_for_model)
history_state = gr.State(([], [], []))
chatbot = gr.Chatbot(
elem_id="chatbot",
bubble_full_width=True,
type="messages", # Keep commented to allow [text, audio] in chatbot
scale=1,
label="πŸ’¬ Chat History",
show_copy_button=True
)
# ---------- Event handlers ----------
submit_btn.click(
fn=self._submit_with_clear,
inputs=[
audio_input,
text_input,
mode,
temperature,
top_p,
repetition_penalty,
max_new_tokens,
min_new_tokens,
top_k,
system_prompt,
history_state, # Pass the current Gradio state tuple
decoder_audio_prompt,
clear_history_on_submit_checkbox
],
outputs=[text_output, audio_output, chatbot, history_state],
)
def _hard_clear(current_history_state_tuple):
_, audio_files, _ = current_history_state_tuple
self._delete_audio_files(audio_files)
gr.Info("Conversation history and associated audio files cleared.")
return "", None, [], ([], [], [])
clear_history_btn.click(
fn=_hard_clear,
inputs=[history_state],
outputs=[text_output, audio_output, chatbot, history_state],
)
def update_interface_visibility(selected_mode):
if selected_mode.startswith("speech_instruct"):
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
def update_output_visibility(selected_mode):
if selected_mode.endswith("speech_response"):
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
def _on_mode_change(task, clear_history_on_mode_change, current_history_state_tuple):
if clear_history_on_mode_change:
_, audio_files_to_delete, _ = current_history_state_tuple
self._delete_audio_files(audio_files_to_delete)
gr.Info("Interaction mode changed. History cleared.")
return self.get_system_prompt_default(task), [], ([], [], [])
else:
gr.Info("Interaction mode changed. History preserved.")
# Keep existing chatbot messages and state
chatbot_messages, audio_files, conv_state = current_history_state_tuple
return self.get_system_prompt_default(task), chatbot_messages, (chatbot_messages, audio_files, conv_state)
mode.change(
fn=_on_mode_change,
inputs=[mode, clear_history_on_mode_change_checkbox, history_state],
outputs=[system_prompt, chatbot, history_state],
)
mode.change(
fn=update_interface_visibility,
inputs=[mode],
outputs=[audio_input, text_input],
)
mode.change(
fn=update_output_visibility,
inputs=[mode],
outputs=[text_output, audio_output],
)
return demo
if __name__ == "__main__":
model_path = "fnlp/MOSS-Speech"
interface = MIMOInterface(model_path)
demo = interface.create_interface()
demo.launch()