Spaces:
Runtime error
Runtime error
| import os | |
| import numpy as np | |
| import torch | |
| import logging | |
| from pathlib import Path | |
| from pytorch_lightning import LightningModule | |
| from os.path import join as pjoin | |
| from collections import OrderedDict | |
| from mGPT.metrics import BaseMetrics | |
| from mGPT.config import get_obj_from_str | |
| class BaseModel(LightningModule): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # self.configure_metrics() | |
| # Ablation | |
| self.test_step_outputs = [] | |
| self.times = [] | |
| self.rep_i = 0 | |
| def training_step(self, batch, batch_idx): | |
| return self.allsplit_step("train", batch, batch_idx) | |
| def validation_step(self, batch, batch_idx): | |
| return self.allsplit_step("val", batch, batch_idx) | |
| def test_step(self, batch, batch_idx): | |
| outputs = self.allsplit_step("test", batch, batch_idx) | |
| self.test_step_outputs.append(outputs) | |
| return outputs | |
| def predict_step(self, batch, batch_idx): | |
| return self.forward(batch) | |
| def on_train_epoch_end(self): | |
| # Log steps and losses | |
| dico = self.step_log_dict() | |
| # Log losses | |
| dico.update(self.loss_log_dict('train')) | |
| # Write to log only if not sanity check | |
| if not self.trainer.sanity_checking: | |
| self.log_dict(dico, sync_dist=True, rank_zero_only=True) | |
| def on_validation_epoch_end(self): | |
| # Log steps and losses | |
| dico = self.step_log_dict() | |
| # Log losses | |
| dico.update(self.loss_log_dict('train')) | |
| dico.update(self.loss_log_dict('val')) | |
| # Log metrics | |
| dico.update(self.metrics_log_dict()) | |
| # Write to log only if not sanity check | |
| if not self.trainer.sanity_checking: | |
| self.log_dict(dico, sync_dist=True, rank_zero_only=True) | |
| def on_test_epoch_end(self): | |
| # Log metrics | |
| dico = self.metrics_log_dict() | |
| # Write to log only if not sanity check | |
| if not self.trainer.sanity_checking: | |
| self.log_dict(dico, sync_dist=True, rank_zero_only=True) | |
| self.save_npy(self.test_step_outputs) | |
| self.rep_i = self.rep_i + 1 | |
| # Free up the memory | |
| self.test_step_outputs.clear() | |
| def preprocess_state_dict(self, state_dict): | |
| new_state_dict = OrderedDict() | |
| # metric_state_dict = self.metrics.state_dict() | |
| loss_state_dict = self._losses.state_dict() | |
| # for k, v in metric_state_dict.items(): | |
| # new_state_dict['metrics.' + k] = v | |
| for k, v in loss_state_dict.items(): | |
| new_state_dict['_losses.' + k] = v | |
| for k, v in state_dict.items(): | |
| if '_losses' not in k and 'Metrics' not in k: | |
| new_state_dict[k] = v | |
| return new_state_dict | |
| def load_state_dict(self, state_dict, strict=True): | |
| new_state_dict = self.preprocess_state_dict(state_dict) | |
| super().load_state_dict(new_state_dict, strict) | |
| def step_log_dict(self): | |
| return { | |
| "epoch": float(self.trainer.current_epoch), | |
| "step": float(self.trainer.current_epoch) | |
| } | |
| def loss_log_dict(self, split: str): | |
| losses = self._losses['losses_' + split] | |
| loss_dict = losses.compute(split) | |
| return loss_dict | |
| def metrics_log_dict(self): | |
| # For TM2TMetrics MM | |
| if self.trainer.datamodule.is_mm and "TM2TMetrics" in self.hparams.metrics_dict: | |
| metrics_dicts = ['MMMetrics'] | |
| else: | |
| metrics_dicts = self.hparams.metrics_dict | |
| # Compute all metrics | |
| metrics_log_dict = {} | |
| for metric in metrics_dicts: | |
| metrics_dict = getattr( | |
| self.metrics, | |
| metric).compute(sanity_flag=self.trainer.sanity_checking) | |
| metrics_log_dict.update({ | |
| f"Metrics/{metric}": value.item() | |
| for metric, value in metrics_dict.items() | |
| }) | |
| return metrics_log_dict | |
| def configure_optimizers(self): | |
| # Optimizer | |
| optim_target = self.hparams.cfg.TRAIN.OPTIM.target | |
| if len(optim_target.split('.')) == 1: | |
| optim_target = 'torch.optim.' + optim_target | |
| optimizer = get_obj_from_str(optim_target)( | |
| params=self.parameters(), **self.hparams.cfg.TRAIN.OPTIM.params) | |
| # Scheduler | |
| scheduler_target = self.hparams.cfg.TRAIN.LR_SCHEDULER.target | |
| if len(scheduler_target.split('.')) == 1: | |
| scheduler_target = 'torch.optim.lr_scheduler.' + scheduler_target | |
| lr_scheduler = get_obj_from_str(scheduler_target)( | |
| optimizer=optimizer, **self.hparams.cfg.TRAIN.LR_SCHEDULER.params) | |
| return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler} | |
| def configure_metrics(self): | |
| self.metrics = BaseMetrics(datamodule=self.datamodule, **self.hparams) | |
| def save_npy(self, outputs): | |
| cfg = self.hparams.cfg | |
| output_dir = Path( | |
| os.path.join( | |
| cfg.FOLDER, | |
| str(cfg.model.target.split('.')[-2].lower()), | |
| str(cfg.NAME), | |
| "samples_" + cfg.TIME, | |
| )) | |
| if cfg.TEST.SAVE_PREDICTIONS: | |
| lengths = [i[1] for i in outputs] | |
| outputs = [i[0] for i in outputs] | |
| if cfg.TEST.DATASETS[0].lower() in ["humanml3d", "kit"]: | |
| keyids = self.trainer.datamodule.test_dataset.name_list | |
| for i in range(len(outputs)): | |
| for bid in range( | |
| min(cfg.TEST.BATCH_SIZE, outputs[i].shape[0])): | |
| keyid = keyids[i * cfg.TEST.BATCH_SIZE + bid] | |
| data = self.trainer.datamodule.test_dataset.data_dict[ | |
| keyid] | |
| motion = torch.tensor(data['motion'], | |
| device=outputs[i].device) | |
| motion = self.datamodule.normalize(motion) | |
| length = data['length'] | |
| text_list = data['text'] | |
| gen_joints = outputs[i][bid][:lengths[i][bid]].cpu( | |
| ).numpy() | |
| if cfg.TEST.REPLICATION_TIMES > 1: | |
| name = f"{keyid}.npy" | |
| else: | |
| name = f"{keyid}.npy" | |
| # save predictions results | |
| npypath = output_dir / name | |
| np.save(npypath, gen_joints) | |
| npypath = output_dir / f"{keyid}_gt.npy" | |
| joints = self.feats2joints(motion).cpu().numpy() | |
| np.save(npypath, joints) | |
| with open(output_dir / f"{keyid}.txt", "a") as f: | |
| for text in text_list: | |
| f.write(f"{text['caption']}\n") | |
| elif cfg.TEST.DATASETS[0].lower() in ["humanact12", "uestc"]: | |
| keyids = range(len(self.trainer.datamodule.test_dataset)) | |
| for i in range(len(outputs)): | |
| for bid in range( | |
| min(cfg.TEST.BATCH_SIZE, outputs[i].shape[0])): | |
| keyid = keyids[i * cfg.TEST.BATCH_SIZE + bid] | |
| gen_joints = outputs[i][bid].cpu() | |
| gen_joints = gen_joints.permute(2, 0, | |
| 1)[:lengths[i][bid], | |
| ...].numpy() | |
| if cfg.TEST.REPLICATION_TIMES > 1: | |
| name = f"{keyid}_{self.rep_i}" | |
| else: | |
| name = f"{keyid}.npy" | |
| # save predictions results | |
| npypath = output_dir / name | |
| np.save(npypath, gen_joints) | |