Spaces:
Runtime error
Runtime error
| from operator import mod | |
| import os | |
| # from cv2 import CAP_PROP_INTELPERC_DEPTH_LOW_CONFIDENCE_VALUE | |
| import imageio | |
| import shutil | |
| import numpy as np | |
| import torch | |
| from tqdm import tqdm | |
| from scipy.spatial.transform import Rotation as R | |
| from mGPT.render.renderer import get_renderer | |
| from mGPT.render.rendermotion import render_video | |
| # from mld.utils.img_utils import convert_img | |
| # from mld.utils.uicap_utils import output_pkl | |
| def parsename(path): | |
| basebane = os.path.basename(path) | |
| base = os.path.splitext(basebane)[0] | |
| strs = base.split('_') | |
| key = strs[-2] | |
| action = strs[-1] | |
| return key, action | |
| def load_anim(path, timesize=None): | |
| data = np.array(imageio.mimread(path, memtest=False)) #[..., :3] | |
| if timesize is None: | |
| return data | |
| # take the last frame and put shadow repeat the last frame but with a little shadow | |
| # lastframe = add_shadow(data[-1]) | |
| # alldata = np.tile(lastframe, (timesize, 1, 1, 1)) | |
| alldata = data | |
| # debug fix mat dim | |
| if len(data.shape) == 3 and len(alldata.shape) == 4: | |
| data = data[:, None, :, :] | |
| # copy the first frames | |
| lenanim = data.shape[0] | |
| alldata[:lenanim] = data[:lenanim] | |
| return alldata | |
| def plot_3d_motion_dico(x): | |
| motion, length, save_path, params, kargs = x | |
| plot_3d_motion(motion, length, save_path, params, **kargs) | |
| def plot_3d_motion(motion, | |
| length, | |
| save_path, | |
| params, | |
| title="", | |
| interval=50, | |
| pred_cam=None, | |
| imgs=None, | |
| bbox=None, | |
| side=None): | |
| # render smpl | |
| # [nframes, nVs, 3] | |
| if motion.shape[1] == 6890: | |
| # width = 250 | |
| # height = 250 | |
| width = 600 | |
| height = 600 | |
| if pred_cam is None: | |
| # cam=(0.75, 0.75, 0, 0.1) | |
| cam = (0.8, 0.8, 0, 0.1) | |
| # cam=(0.9, 0.9, 0, 0.1) | |
| else: | |
| assert bbox is not None | |
| assert imgs is not None | |
| # Tmp visulize | |
| # weak perspective camera parameters in cropped image space (s,tx,ty) | |
| # to | |
| # weak perspective camera parameters in original image space (sx,sy,tx,ty) | |
| cam = np.concatenate( | |
| (pred_cam[:, [0]], pred_cam[:, [0]], pred_cam[:, 1:3]), axis=1) | |
| # ToDo convert to original cam | |
| # load original img? | |
| # calculate cam after padding??? | |
| # | |
| # cam = convert_crop_cam_to_orig_img( | |
| # cam=pred_cam, | |
| # bbox=bbox, | |
| # img_width=width, | |
| # img_height=height | |
| # ) | |
| cam_pose = np.eye(4) | |
| cam_pose[0:3, 0:3] = R.from_euler('x', -90, degrees=True).as_matrix() | |
| cam_pose[0:3, 3] = [0, 0, 0] | |
| if side: | |
| rz = np.eye(4) | |
| rz[0:3, 0:3] = R.from_euler('z', -90, degrees=True).as_matrix() | |
| cam_pose = np.matmul(rz, cam_pose) | |
| # # reshape input imgs | |
| # if imgs is not None: | |
| # imgs = convert_img(imgs.unsqueeze(0), height)[:,0] | |
| backgrounds = imgs if imgs is not None else np.ones( | |
| (height, width, 3)) * 255 | |
| renderer = get_renderer(width, height, cam_pose) | |
| # [nframes, nVs, 3] | |
| meshes = motion | |
| key, action = parsename(save_path) | |
| render_video(meshes, | |
| key, | |
| action, | |
| renderer, | |
| save_path, | |
| backgrounds, | |
| cam_pose, | |
| cams=cam) | |
| return | |
| def stack_images(real, real_gens, gen, real_imgs=None): | |
| # change to 3 channel | |
| # print(real.shape) | |
| # print(real_gens.shape) | |
| # print(real_gens.shape) | |
| # real = real[:3] | |
| # real_gens = real_gens[:3] | |
| # gen = gen[:3] | |
| nleft_cols = len(real_gens) + 1 | |
| print("Stacking frames..") | |
| allframes = np.concatenate( | |
| (real[:, None, ...], *[x[:, None, ...] for x in real_gens], gen), 1) | |
| nframes, nspa, nats, h, w, pix = allframes.shape | |
| blackborder = np.zeros((w // 30, h * nats, pix), dtype=allframes.dtype) | |
| # blackborder = np.ones((w//30, h*nats, pix), dtype=allframes.dtype)*255 | |
| frames = [] | |
| for frame_idx in tqdm(range(nframes)): | |
| columns = np.vstack(allframes[frame_idx].transpose(1, 2, 3, 4, | |
| 0)).transpose( | |
| 3, 1, 0, 2) | |
| frame = np.concatenate( | |
| (*columns[0:nleft_cols], blackborder, *columns[nleft_cols:]), | |
| 0).transpose(1, 0, 2) | |
| frames.append(frame) | |
| if real_imgs is not None: | |
| resize_imgs = convert_img(real_imgs, h)[:nframes, ...] | |
| for i in range(len(frames)): | |
| imgs = np.vstack(resize_imgs[i, ...]) | |
| imgs4 = np.ones( | |
| (imgs.shape[0], imgs.shape[1], 4), dtype=np.uint8) * 255 | |
| imgs4[:, :, :3] = imgs | |
| #imgs = torch2numpy(imgs) | |
| frames[i] = np.concatenate((imgs4, frames[i]), 1) | |
| return np.stack(frames) | |
| def stack_images_gen(gen, real_imgs=None): | |
| print("Stacking frames..") | |
| allframes = gen | |
| nframes, nspa, nats, h, w, pix = allframes.shape | |
| blackborder = np.zeros((w * nspa, h // 30, pix), dtype=allframes.dtype) | |
| blackborder = blackborder[None, ...].repeat(nats, | |
| axis=0).transpose(0, 2, 1, 3) | |
| frames = [] | |
| for frame_idx in tqdm(range(nframes)): | |
| rows = np.vstack(allframes[frame_idx].transpose(0, 3, 2, 4, | |
| 1)).transpose( | |
| 3, 1, 0, 2) | |
| rows = np.concatenate((rows, blackborder), 1) | |
| frame = np.concatenate(rows, 0) | |
| frames.append(frame) | |
| if real_imgs is not None: | |
| # ToDo Add images | |
| resize_imgs = convert_img(real_imgs, h)[:nframes, ...] | |
| for i in range(len(frames)): | |
| imgs = np.vstack(resize_imgs[i, ...]) | |
| #imgs = torch2numpy(imgs) | |
| frames[i] = np.concatenate((imgs, frames[i]), 1) | |
| return np.stack(frames) | |
| def generate_by_video(visualization, reconstructions, generation, | |
| label_to_action_name, params, nats, nspa, tmp_path): | |
| # shape : (17, 3, 4, 480, 640, 3) | |
| # (nframes, row, column, h, w, 3) | |
| fps = params["fps"] | |
| params = params.copy() | |
| gen_only = False | |
| if visualization is None: | |
| gen_only = True | |
| outputkey = "output_vertices" | |
| params["pose_rep"] = "vertices" | |
| elif "output_vertices" in visualization: | |
| outputkey = "output_vertices" | |
| params["pose_rep"] = "vertices" | |
| elif "output_xyz" in visualization: | |
| outputkey = "output_xyz" | |
| params["pose_rep"] = "xyz" | |
| else: | |
| outputkey = "poses" | |
| keep = [outputkey, 'lengths', "y"] | |
| gener = {key: generation[key].data.cpu().numpy() for key in keep} | |
| if not gen_only: | |
| visu = {key: visualization[key].data.cpu().numpy() for key in keep} | |
| recons = {} | |
| # visualize regressor results | |
| if 'vertices_hat' in reconstructions['ntf']: | |
| recons['regressor'] = { | |
| 'output_vertices': | |
| reconstructions['ntf']['vertices_hat'].data.cpu().numpy(), | |
| 'lengths': | |
| reconstructions['ntf']['lengths'].data.cpu().numpy(), | |
| 'y': | |
| reconstructions['ntf']['y'].data.cpu().numpy() | |
| } | |
| recons['regressor_side'] = { | |
| 'output_vertices': | |
| reconstructions['ntf']['vertices_hat'].data.cpu().numpy(), | |
| 'lengths': | |
| reconstructions['ntf']['lengths'].data.cpu().numpy(), | |
| 'y': | |
| reconstructions['ntf']['y'].data.cpu().numpy(), | |
| 'side': | |
| True | |
| } | |
| # ToDo rendering overlap results | |
| # recons['overlap'] = {'output_vertices':reconstructions['ntf']['vertices_hat'].data.cpu().numpy(), | |
| # 'lengths':reconstructions['ntf']['lengths'].data.cpu().numpy(), | |
| # 'y':reconstructions['ntf']['y'].data.cpu().numpy(), | |
| # 'imgs':reconstructions['ntf']['imgs'], | |
| # 'bbox':reconstructions['ntf']['bbox'].data.cpu().numpy(), | |
| # 'cam':reconstructions['ntf']['preds'][0]['cam'].data.cpu().numpy()} | |
| for mode, reconstruction in reconstructions.items(): | |
| recons[mode] = { | |
| key: reconstruction[key].data.cpu().numpy() | |
| for key in keep | |
| } | |
| recons[mode + '_side'] = { | |
| key: reconstruction[key].data.cpu().numpy() | |
| for key in keep | |
| } | |
| recons[mode + '_side']['side'] = True | |
| # lenmax = max(gener['lengths'].max(), visu['lengths'].max()) | |
| # timesize = lenmax + 5 longer visulization | |
| lenmax = gener['lengths'].max() | |
| timesize = lenmax | |
| import multiprocessing | |
| def pool_job_with_desc(pool, iterator, desc, max_, save_path_format, isij): | |
| with tqdm(total=max_, desc=desc.format("Render")) as pbar: | |
| for data in iterator: | |
| plot_3d_motion_dico(data) | |
| # for _ in pool.imap_unordered(plot_3d_motion_dico, iterator): | |
| # pbar.update() | |
| if isij: | |
| array = np.stack([[ | |
| load_anim(save_path_format.format(i, j), timesize) | |
| for j in range(nats) | |
| ] for i in tqdm(range(nspa), desc=desc.format("Load"))]) | |
| return array.transpose(2, 0, 1, 3, 4, 5) | |
| else: | |
| array = np.stack([ | |
| load_anim(save_path_format.format(i), timesize) | |
| for i in tqdm(range(nats), desc=desc.format("Load")) | |
| ]) | |
| return array.transpose(1, 0, 2, 3, 4) | |
| pool = None | |
| # if True: | |
| with multiprocessing.Pool() as pool: | |
| # Generated samples | |
| save_path_format = os.path.join(tmp_path, "gen_{}_{}.gif") | |
| iterator = ((gener[outputkey][i, j], gener['lengths'][i, j], | |
| save_path_format.format(i, j), params, { | |
| "title": | |
| f"gen: {label_to_action_name(gener['y'][i, j])}", | |
| "interval": 1000 / fps | |
| }) for j in range(nats) for i in range(nspa)) | |
| gener["frames"] = pool_job_with_desc(pool, iterator, | |
| "{} the generated samples", | |
| nats * nspa, save_path_format, | |
| True) | |
| if not gen_only: | |
| # Real samples | |
| save_path_format = os.path.join(tmp_path, "real_{}.gif") | |
| iterator = ((visu[outputkey][i], visu['lengths'][i], | |
| save_path_format.format(i), params, { | |
| "title": | |
| f"real: {label_to_action_name(visu['y'][i])}", | |
| "interval": 1000 / fps | |
| }) for i in range(nats)) | |
| visu["frames"] = pool_job_with_desc(pool, iterator, | |
| "{} the real samples", nats, | |
| save_path_format, False) | |
| for mode, recon in recons.items(): | |
| # Reconstructed samples | |
| save_path_format = os.path.join( | |
| tmp_path, f"reconstructed_{mode}_" + "{}.gif") | |
| if mode == 'overlap': | |
| iterator = (( | |
| recon[outputkey][i], recon['lengths'][i], | |
| save_path_format.format(i), params, { | |
| "title": | |
| f"recons: {label_to_action_name(recon['y'][i])}", | |
| "interval": 1000 / fps, | |
| "pred_cam": recon['cam'][i], | |
| "imgs": recon['imgs'][i], | |
| "bbox": recon['bbox'][i] | |
| }) for i in range(nats)) | |
| else: | |
| side = True if 'side' in recon.keys() else False | |
| iterator = (( | |
| recon[outputkey][i], recon['lengths'][i], | |
| save_path_format.format(i), params, { | |
| "title": | |
| f"recons: {label_to_action_name(recon['y'][i])}", | |
| "interval": 1000 / fps, | |
| "side": side | |
| }) for i in range(nats)) | |
| recon["frames"] = pool_job_with_desc( | |
| pool, iterator, "{} the reconstructed samples", nats, | |
| save_path_format, False) | |
| # vis img in visu | |
| if not gen_only: | |
| input_imgs = visualization["imgs"] if visualization[ | |
| "imgs"] is not None else None | |
| vis = visu["frames"] if not gen_only else None | |
| rec = [recon["frames"] | |
| for recon in recons.values()] if not gen_only else None | |
| gen = gener["frames"] | |
| frames = stack_images(vis, rec, gen, input_imgs) | |
| else: | |
| gen = gener["frames"] | |
| frames = stack_images_gen(gen) | |
| return frames | |
| def viz_epoch(model, | |
| dataset, | |
| epoch, | |
| params, | |
| folder, | |
| module=None, | |
| writer=None, | |
| exps=''): | |
| """ Generate & viz samples """ | |
| module = model if module is None else module | |
| # visualize with joints3D | |
| model.outputxyz = True | |
| print(f"Visualization of the epoch {epoch}") | |
| noise_same_action = params["noise_same_action"] | |
| noise_diff_action = params["noise_diff_action"] | |
| duration_mode = params["duration_mode"] | |
| reconstruction_mode = params["reconstruction_mode"] | |
| decoder_test = params["decoder_test"] | |
| fact = params["fact_latent"] | |
| figname = params["figname"].format(epoch) | |
| nspa = params["num_samples_per_action"] | |
| nats = params["num_actions_to_sample"] | |
| num_classes = params["num_classes"] | |
| # nats = min(num_classes, nats) | |
| # define some classes | |
| classes = torch.randperm(num_classes)[:nats] | |
| # duplicate same classes when sampling too much | |
| if nats > num_classes: | |
| classes = classes.expand(nats) | |
| meandurations = torch.from_numpy( | |
| np.array([ | |
| round(dataset.get_mean_length_label(cl.item())) for cl in classes | |
| ])) | |
| if duration_mode == "interpolate" or decoder_test == "diffduration": | |
| points, step = np.linspace(-nspa, nspa, nspa, retstep=True) | |
| # points = np.round(10*points/step).astype(int) | |
| points = np.array([5, 10, 16, 30, 60, 80]).astype(int) | |
| # gendurations = meandurations.repeat((nspa, 1)) + points[:, None] | |
| gendurations = torch.from_numpy(points[:, None]).expand( | |
| (nspa, 1)).repeat((1, nats)) | |
| else: | |
| gendurations = meandurations.repeat((nspa, 1)) | |
| print("Duration time: ") | |
| print(gendurations[:, 0]) | |
| # extract the real samples | |
| # real_samples, real_theta, mask_real, real_lengths, imgs, paths | |
| batch = dataset.get_label_sample_batch(classes.numpy()) | |
| # ToDo | |
| # clean these data | |
| # Visualizaion of real samples | |
| visualization = { | |
| "x": batch['x'].to(model.device), | |
| "y": classes.to(model.device), | |
| "mask": batch['mask'].to(model.device), | |
| 'lengths': batch['lengths'].to(model.device), | |
| "output": batch['x'].to(model.device), | |
| "theta": | |
| batch['theta'].to(model.device) if 'theta' in batch.keys() else None, | |
| "imgs": | |
| batch['imgs'].to(model.device) if 'imgs' in batch.keys() else None, | |
| "paths": batch['paths'] if 'paths' in batch.keys() else None, | |
| } | |
| # Visualizaion of real samples | |
| if reconstruction_mode == "both": | |
| reconstructions = { | |
| "tf": { | |
| "x": | |
| batch['x'].to(model.device), | |
| "y": | |
| classes.to(model.device), | |
| 'lengths': | |
| batch['lengths'].to(model.device), | |
| "mask": | |
| batch['mask'].to(model.device), | |
| "teacher_force": | |
| True, | |
| "theta": | |
| batch['theta'].to(model.device) | |
| if 'theta' in batch.keys() else None | |
| }, | |
| "ntf": { | |
| "x": | |
| batch['x'].to(model.device), | |
| "y": | |
| classes.to(model.device), | |
| 'lengths': | |
| batch['lengths'].to(model.device), | |
| "mask": | |
| batch['mask'].to(model.device), | |
| "theta": | |
| batch['theta'].to(model.device) | |
| if 'theta' in batch.keys() else None | |
| } | |
| } | |
| else: | |
| reconstructions = { | |
| reconstruction_mode: { | |
| "x": | |
| batch['x'].to(model.device), | |
| "y": | |
| classes.to(model.device), | |
| 'lengths': | |
| batch['lengths'].to(model.device), | |
| "mask": | |
| batch['mask'].to(model.device), | |
| "teacher_force": | |
| reconstruction_mode == "tf", | |
| "imgs": | |
| batch['imgs'].to(model.device) | |
| if 'imgs' in batch.keys() else None, | |
| "theta": | |
| batch['theta'].to(model.device) | |
| if 'theta' in batch.keys() else None, | |
| "bbox": | |
| batch['bbox'] if 'bbox' in batch.keys() else None | |
| } | |
| } | |
| print("Computing the samples poses..") | |
| # generate the repr (joints3D/pose etc) | |
| model.eval() | |
| with torch.no_grad(): | |
| # Reconstruction of the real data | |
| for mode in reconstructions: | |
| # update reconstruction dicts | |
| reconstructions[mode] = model(reconstructions[mode]) | |
| reconstruction = reconstructions[list(reconstructions.keys())[0]] | |
| if decoder_test == "gt": | |
| # Generate the new data | |
| gt_input = { | |
| "x": batch['x'].repeat(nspa, 1, 1, 1).to(model.device), | |
| "y": classes.repeat(nspa).to(model.device), | |
| "mask": batch['mask'].repeat(nspa, 1).to(model.device), | |
| 'lengths': batch['lengths'].repeat(nspa).to(model.device) | |
| } | |
| generation = model(gt_input) | |
| if decoder_test == "new": | |
| # Generate the new data | |
| generation = module.generate(gendurations, | |
| classes=classes, | |
| nspa=nspa, | |
| noise_same_action=noise_same_action, | |
| noise_diff_action=noise_diff_action, | |
| fact=fact) | |
| elif decoder_test == "diffaction": | |
| assert nats == nspa | |
| # keep the same noise for each "sample" | |
| z = reconstruction["z"].repeat((nspa, 1)) | |
| mask = reconstruction["mask"].repeat((nspa, 1)) | |
| lengths = reconstruction['lengths'].repeat(nspa) | |
| # but use other labels | |
| y = classes.repeat_interleave(nspa).to(model.device) | |
| generation = {"z": z, "y": y, "mask": mask, 'lengths': lengths} | |
| model.decoder(generation) | |
| elif decoder_test == "diffduration": | |
| z = reconstruction["z"].repeat((nspa, 1)) | |
| lengths = gendurations.reshape(-1).to(model.device) | |
| mask = model.lengths_to_mask(lengths) | |
| y = classes.repeat(nspa).to(model.device) | |
| generation = {"z": z, "y": y, "mask": mask, 'lengths': lengths} | |
| model.decoder(generation) | |
| elif decoder_test == "interpolate_action": | |
| assert nats == nspa | |
| # same noise for each sample | |
| z_diff_action = torch.randn(1, | |
| model.latent_dim, | |
| device=model.device).repeat(nats, 1) | |
| z = z_diff_action.repeat((nspa, 1)) | |
| # but use combination of labels and labels below | |
| y = F.one_hot(classes.to(model.device), | |
| model.num_classes).to(model.device) | |
| y_below = F.one_hot(torch.cat((classes[1:], classes[0:1])), | |
| model.num_classes).to(model.device) | |
| convex_factors = torch.linspace(0, 1, nspa, device=model.device) | |
| y_mixed = torch.einsum("nk,m->mnk", y, 1-convex_factors) + \ | |
| torch.einsum("nk,m->mnk", y_below, convex_factors) | |
| y_mixed = y_mixed.reshape(nspa * nats, y_mixed.shape[-1]) | |
| durations = gendurations[0].to(model.device) | |
| durations_below = torch.cat((durations[1:], durations[0:1])) | |
| gendurations = torch.einsum("l,k->kl", durations, 1-convex_factors) + \ | |
| torch.einsum("l,k->kl", durations_below, convex_factors) | |
| gendurations = gendurations.to(dtype=durations.dtype) | |
| lengths = gendurations.to(model.device).reshape(z.shape[0]) | |
| mask = model.lengths_to_mask(lengths) | |
| generation = { | |
| "z": z, | |
| "y": y_mixed, | |
| "mask": mask, | |
| 'lengths': lengths | |
| } | |
| generation = model.decoder(generation) | |
| visualization = module.prepare(visualization) | |
| visualization["output_xyz"] = visualization["x_xyz"] | |
| visualization["output_vertices"] = visualization["x_vertices"] | |
| # Get xyz for the real ones | |
| # visualization["output_xyz"] = module.rot2xyz(visualization["output"], visualization["mask"], jointstype="smpl") | |
| # # Get smpl vertices for the real ones | |
| # if module.cvae.pose_rep != "xyz": | |
| # visualization["output_vertices"] = module.rot2xyz(visualization["output"], visualization["mask"], jointstype="vertices") | |
| for key, val in generation.items(): | |
| if len(generation[key].shape) == 1: | |
| generation[key] = val.reshape(nspa, nats) | |
| else: | |
| generation[key] = val.reshape(nspa, nats, *val.shape[1:]) | |
| finalpath = os.path.join(folder, figname + exps + ".gif") | |
| tmp_path = os.path.join(folder, f"subfigures_{figname}") | |
| os.makedirs(tmp_path, exist_ok=True) | |
| print("Generate the videos..") | |
| frames = generate_by_video(visualization, reconstructions, generation, | |
| dataset.label_to_action_name, params, nats, | |
| nspa, tmp_path) | |
| print(f"Writing video {finalpath}") | |
| imageio.mimsave(finalpath.replace('gif', 'mp4'), frames, fps=params["fps"]) | |
| shutil.rmtree(tmp_path) | |
| # output npy | |
| output = { | |
| "data_id": batch['id'], | |
| "paths": batch['paths'], | |
| "x": batch['x'].cpu().numpy(), | |
| "x_vertices": visualization["x_vertices"].cpu().numpy(), | |
| "output_vertices": | |
| reconstructions['ntf']["output_vertices"].cpu().numpy(), | |
| "gen_vertices": generation["output_vertices"].cpu().numpy() | |
| } | |
| outputpath = finalpath.replace('gif', 'npy') | |
| np.save(outputpath, output) | |
| # output pkl | |
| batch_recon = reconstructions["ntf"] | |
| outputpath = finalpath.replace('gif', 'pkl') | |
| # output_pkl([batch_recon], outputpath) | |
| if writer is not None: | |
| writer.add_video(f"Video/Epoch {epoch}", | |
| frames.transpose(0, 3, 1, 2)[None], | |
| epoch, | |
| fps=params["fps"]) | |
| return finalpath | |
| def viz_dataset(dataset, params, folder): | |
| """ Generate & viz samples """ | |
| print("Visualization of the dataset") | |
| nspa = params["num_samples_per_action"] | |
| nats = params["num_actions_to_sample"] | |
| num_classes = params["num_classes"] | |
| figname = "{}_{}_numframes_{}_sampling_{}_step_{}".format( | |
| params["dataset"], params["pose_rep"], params["num_frames"], | |
| params["sampling"], params["sampling_step"]) | |
| # define some classes | |
| classes = torch.randperm(num_classes)[:nats] | |
| allclasses = classes.repeat(nspa, 1).reshape(nspa * nats) | |
| # extract the real samples | |
| real_samples, mask_real, real_lengths = dataset.get_label_sample_batch( | |
| allclasses.numpy()) | |
| # to visualize directly | |
| # Visualizaion of real samples | |
| visualization = { | |
| "x": real_samples, | |
| "y": allclasses, | |
| "mask": mask_real, | |
| 'lengths': real_lengths, | |
| "output": real_samples | |
| } | |
| from mGPT.models.rotation2xyz import Rotation2xyz | |
| device = params["device"] | |
| rot2xyz = Rotation2xyz(device=device) | |
| rot2xyz_params = { | |
| "pose_rep": params["pose_rep"], | |
| "glob_rot": params["glob_rot"], | |
| "glob": params["glob"], | |
| "jointstype": params["jointstype"], | |
| "translation": params["translation"] | |
| } | |
| output = visualization["output"] | |
| visualization["output_xyz"] = rot2xyz(output.to(device), | |
| visualization["mask"].to(device), | |
| **rot2xyz_params) | |
| for key, val in visualization.items(): | |
| if len(visualization[key].shape) == 1: | |
| visualization[key] = val.reshape(nspa, nats) | |
| else: | |
| visualization[key] = val.reshape(nspa, nats, *val.shape[1:]) | |
| finalpath = os.path.join(folder, figname + ".gif") | |
| tmp_path = os.path.join(folder, f"subfigures_{figname}") | |
| os.makedirs(tmp_path, exist_ok=True) | |
| print("Generate the videos..") | |
| frames = generate_by_video_sequences(visualization, | |
| dataset.label_to_action_name, params, | |
| nats, nspa, tmp_path) | |
| print(f"Writing video {finalpath}..") | |
| imageio.mimsave(finalpath, frames, fps=params["fps"]) | |
| def generate_by_video_sequences(visualization, label_to_action_name, params, | |
| nats, nspa, tmp_path): | |
| # shape : (17, 3, 4, 480, 640, 3) | |
| # (nframes, row, column, h, w, 3) | |
| fps = params["fps"] | |
| if "output_vetices" in visualization: | |
| outputkey = "output_vetices" | |
| params["pose_rep"] = "vertices" | |
| elif "output_xyz" in visualization: | |
| outputkey = "output_xyz" | |
| params["pose_rep"] = "xyz" | |
| else: | |
| outputkey = "poses" | |
| keep = [outputkey, 'lengths', "y"] | |
| visu = {key: visualization[key].data.cpu().numpy() for key in keep} | |
| lenmax = visu['lengths'].max() | |
| timesize = lenmax + 5 | |
| # import multiprocessing | |
| def pool_job_with_desc(pool, iterator, desc, max_, save_path_format): | |
| for data in iterator: | |
| plot_3d_motion_dico(data) | |
| # with tqdm(total=max_, desc=desc.format("Render")) as pbar: | |
| # for _ in pool.imap_unordered(plot_3d_motion_dico, iterator): | |
| # pbar.update() | |
| array = np.stack([[ | |
| load_anim(save_path_format.format(i, j), timesize) | |
| for j in range(nats) | |
| ] for i in tqdm(range(nspa), desc=desc.format("Load"))]) | |
| return array.transpose(2, 0, 1, 3, 4, 5) | |
| pool = None | |
| # with multiprocessing.Pool() as pool: | |
| # Real samples | |
| save_path_format = os.path.join(tmp_path, "real_{}_{}.gif") | |
| iterator = ((visu[outputkey][i, j], visu['lengths'][i, j], | |
| save_path_format.format(i, j), params, { | |
| "title": f"real: {label_to_action_name(visu['y'][i, j])}", | |
| "interval": 1000 / fps | |
| }) for j in range(nats) for i in range(nspa)) | |
| visu["frames"] = pool_job_with_desc(pool, iterator, "{} the real samples", | |
| nats, save_path_format) | |
| frames = stack_images_sequence(visu["frames"]) | |
| return frames | |
| def stack_images_sequence(visu): | |
| print("Stacking frames..") | |
| allframes = visu | |
| nframes, nspa, nats, h, w, pix = allframes.shape | |
| frames = [] | |
| for frame_idx in tqdm(range(nframes)): | |
| columns = np.vstack(allframes[frame_idx].transpose(1, 2, 3, 4, | |
| 0)).transpose( | |
| 3, 1, 0, 2) | |
| frame = np.concatenate(columns).transpose(1, 0, 2) | |
| frames.append(frame) | |
| return np.stack(frames) | |