Spaces:
Runtime error
Runtime error
| import torch | |
| def load_pretrained(cfg, model, logger, phase="train"): | |
| logger.info(f"Loading pretrain model from {cfg.TRAIN.PRETRAINED}") | |
| if phase == "train": | |
| ckpt_path = cfg.TRAIN.PRETRAINED | |
| elif phase == "test": | |
| ckpt_path = cfg.TEST.CHECKPOINTS | |
| state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"] | |
| model.load_state_dict(state_dict, strict=True) | |
| return model | |
| def load_pretrained_vae(cfg, model, logger): | |
| state_dict = torch.load(cfg.TRAIN.PRETRAINED_VAE, | |
| map_location="cpu")['state_dict'] | |
| logger.info(f"Loading pretrain vae from {cfg.TRAIN.PRETRAINED_VAE}") | |
| # Extract encoder/decoder | |
| from collections import OrderedDict | |
| vae_dict = OrderedDict() | |
| for k, v in state_dict.items(): | |
| if "motion_vae" in k: | |
| name = k.replace("motion_vae.", "") | |
| vae_dict[name] = v | |
| elif "vae" in k: | |
| name = k.replace("vae.", "") | |
| vae_dict[name] = v | |
| if hasattr(model, 'vae'): | |
| model.vae.load_state_dict(vae_dict, strict=True) | |
| else: | |
| model.motion_vae.load_state_dict(vae_dict, strict=True) | |
| return model | |