Spaces:
Runtime error
Runtime error
| from typing import List | |
| import os | |
| import torch | |
| from torch import Tensor | |
| from torchmetrics import Metric | |
| from torchmetrics.functional import pairwise_euclidean_distance | |
| from .utils import * | |
| from mGPT.config import instantiate_from_config | |
| class TM2TMetrics(Metric): | |
| def __init__(self, | |
| cfg, | |
| dataname='humanml3d', | |
| top_k=3, | |
| R_size=32, | |
| diversity_times=300, | |
| dist_sync_on_step=True, | |
| **kwargs): | |
| super().__init__(dist_sync_on_step=dist_sync_on_step) | |
| self.cfg = cfg | |
| self.dataname = dataname | |
| self.name = "matching, fid, and diversity scores" | |
| self.top_k = top_k | |
| self.R_size = R_size | |
| self.text = 'lm' in cfg.TRAIN.STAGE and cfg.model.params.task == 't2m' | |
| self.diversity_times = diversity_times | |
| self.add_state("count", default=torch.tensor(0), dist_reduce_fx="sum") | |
| self.add_state("count_seq", | |
| default=torch.tensor(0), | |
| dist_reduce_fx="sum") | |
| self.metrics = [] | |
| # Matching scores | |
| if self.text: | |
| self.add_state("Matching_score", | |
| default=torch.tensor(0.0), | |
| dist_reduce_fx="sum") | |
| self.add_state("gt_Matching_score", | |
| default=torch.tensor(0.0), | |
| dist_reduce_fx="sum") | |
| self.Matching_metrics = ["Matching_score", "gt_Matching_score"] | |
| for k in range(1, top_k + 1): | |
| self.add_state( | |
| f"R_precision_top_{str(k)}", | |
| default=torch.tensor(0.0), | |
| dist_reduce_fx="sum", | |
| ) | |
| self.Matching_metrics.append(f"R_precision_top_{str(k)}") | |
| for k in range(1, top_k + 1): | |
| self.add_state( | |
| f"gt_R_precision_top_{str(k)}", | |
| default=torch.tensor(0.0), | |
| dist_reduce_fx="sum", | |
| ) | |
| self.Matching_metrics.append(f"gt_R_precision_top_{str(k)}") | |
| self.metrics.extend(self.Matching_metrics) | |
| # Fid | |
| self.add_state("FID", default=torch.tensor(0.0), dist_reduce_fx="sum") | |
| self.metrics.append("FID") | |
| # Diversity | |
| self.add_state("Diversity", | |
| default=torch.tensor(0.0), | |
| dist_reduce_fx="sum") | |
| self.add_state("gt_Diversity", | |
| default=torch.tensor(0.0), | |
| dist_reduce_fx="sum") | |
| self.metrics.extend(["Diversity", "gt_Diversity"]) | |
| # Chached batches | |
| self.add_state("text_embeddings", default=[], dist_reduce_fx=None) | |
| self.add_state("recmotion_embeddings", default=[], dist_reduce_fx=None) | |
| self.add_state("gtmotion_embeddings", default=[], dist_reduce_fx=None) | |
| # T2M Evaluator | |
| self._get_t2m_evaluator(cfg) | |
| def _get_t2m_evaluator(self, cfg): | |
| """ | |
| load T2M text encoder and motion encoder for evaluating | |
| """ | |
| # init module | |
| self.t2m_textencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_textencoder) | |
| self.t2m_moveencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_moveencoder) | |
| self.t2m_motionencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_motionencoder) | |
| # load pretrianed | |
| if self.dataname == "kit": | |
| dataname = "kit" | |
| else: | |
| dataname = "t2m" | |
| t2m_checkpoint = torch.load(os.path.join( | |
| cfg.METRIC.TM2T.t2m_path, dataname, "text_mot_match/model/finest.tar"), | |
| map_location="cpu") | |
| self.t2m_textencoder.load_state_dict(t2m_checkpoint["text_encoder"]) | |
| self.t2m_moveencoder.load_state_dict( | |
| t2m_checkpoint["movement_encoder"]) | |
| self.t2m_motionencoder.load_state_dict( | |
| t2m_checkpoint["motion_encoder"]) | |
| # freeze params | |
| self.t2m_textencoder.eval() | |
| self.t2m_moveencoder.eval() | |
| self.t2m_motionencoder.eval() | |
| for p in self.t2m_textencoder.parameters(): | |
| p.requires_grad = False | |
| for p in self.t2m_moveencoder.parameters(): | |
| p.requires_grad = False | |
| for p in self.t2m_motionencoder.parameters(): | |
| p.requires_grad = False | |
| def compute(self, sanity_flag): | |
| count = self.count.item() | |
| count_seq = self.count_seq.item() | |
| # Init metrics dict | |
| metrics = {metric: getattr(self, metric) for metric in self.metrics} | |
| # Jump in sanity check stage | |
| if sanity_flag: | |
| return metrics | |
| # Cat cached batches and shuffle | |
| shuffle_idx = torch.randperm(count_seq) | |
| all_genmotions = torch.cat(self.recmotion_embeddings, | |
| axis=0).cpu()[shuffle_idx, :] | |
| all_gtmotions = torch.cat(self.gtmotion_embeddings, | |
| axis=0).cpu()[shuffle_idx, :] | |
| # Compute text related metrics | |
| if self.text: | |
| all_texts = torch.cat(self.text_embeddings, | |
| axis=0).cpu()[shuffle_idx, :] | |
| # Compute r-precision | |
| assert count_seq > self.R_size | |
| top_k_mat = torch.zeros((self.top_k, )) | |
| for i in range(count_seq // self.R_size): | |
| # [bs=32, 1*256] | |
| group_texts = all_texts[i * self.R_size:(i + 1) * self.R_size] | |
| # [bs=32, 1*256] | |
| group_motions = all_genmotions[i * self.R_size:(i + 1) * | |
| self.R_size] | |
| # dist_mat = pairwise_euclidean_distance(group_texts, group_motions) | |
| # [bs=32, 32] | |
| dist_mat = euclidean_distance_matrix( | |
| group_texts, group_motions).nan_to_num() | |
| # print(dist_mat[:5]) | |
| self.Matching_score += dist_mat.trace() | |
| argsmax = torch.argsort(dist_mat, dim=1) | |
| top_k_mat += calculate_top_k(argsmax, | |
| top_k=self.top_k).sum(axis=0) | |
| R_count = count_seq // self.R_size * self.R_size | |
| metrics["Matching_score"] = self.Matching_score / R_count | |
| for k in range(self.top_k): | |
| metrics[f"R_precision_top_{str(k+1)}"] = top_k_mat[k] / R_count | |
| # Compute r-precision with gt | |
| assert count_seq > self.R_size | |
| top_k_mat = torch.zeros((self.top_k, )) | |
| for i in range(count_seq // self.R_size): | |
| # [bs=32, 1*256] | |
| group_texts = all_texts[i * self.R_size:(i + 1) * self.R_size] | |
| # [bs=32, 1*256] | |
| group_motions = all_gtmotions[i * self.R_size:(i + 1) * | |
| self.R_size] | |
| # [bs=32, 32] | |
| dist_mat = euclidean_distance_matrix( | |
| group_texts, group_motions).nan_to_num() | |
| # match score | |
| self.gt_Matching_score += dist_mat.trace() | |
| argsmax = torch.argsort(dist_mat, dim=1) | |
| top_k_mat += calculate_top_k(argsmax, | |
| top_k=self.top_k).sum(axis=0) | |
| metrics["gt_Matching_score"] = self.gt_Matching_score / R_count | |
| for k in range(self.top_k): | |
| metrics[f"gt_R_precision_top_{str(k+1)}"] = top_k_mat[k] / R_count | |
| # tensor -> numpy for FID | |
| all_genmotions = all_genmotions.numpy() | |
| all_gtmotions = all_gtmotions.numpy() | |
| # Compute fid | |
| mu, cov = calculate_activation_statistics_np(all_genmotions) | |
| gt_mu, gt_cov = calculate_activation_statistics_np(all_gtmotions) | |
| metrics["FID"] = calculate_frechet_distance_np(gt_mu, gt_cov, mu, cov) | |
| # Compute diversity | |
| assert count_seq > self.diversity_times | |
| metrics["Diversity"] = calculate_diversity_np(all_genmotions, | |
| self.diversity_times) | |
| metrics["gt_Diversity"] = calculate_diversity_np( | |
| all_gtmotions, self.diversity_times) | |
| # Reset | |
| self.reset() | |
| return {**metrics} | |
| def update(self, | |
| feats_ref: Tensor, | |
| feats_rst: Tensor, | |
| lengths_ref: List[int], | |
| lengths_rst: List[int], | |
| word_embs: Tensor = None, | |
| pos_ohot: Tensor = None, | |
| text_lengths: Tensor = None): | |
| self.count += sum(lengths_ref) | |
| self.count_seq += len(lengths_ref) | |
| # T2m motion encoder | |
| align_idx = np.argsort(lengths_ref)[::-1].copy() | |
| feats_ref = feats_ref[align_idx] | |
| lengths_ref = np.array(lengths_ref)[align_idx] | |
| gtmotion_embeddings = self.get_motion_embeddings( | |
| feats_ref, lengths_ref) | |
| cache = [0] * len(lengths_ref) | |
| for i in range(len(lengths_ref)): | |
| cache[align_idx[i]] = gtmotion_embeddings[i:i + 1] | |
| self.gtmotion_embeddings.extend(cache) | |
| align_idx = np.argsort(lengths_rst)[::-1].copy() | |
| feats_rst = feats_rst[align_idx] | |
| lengths_rst = np.array(lengths_rst)[align_idx] | |
| recmotion_embeddings = self.get_motion_embeddings( | |
| feats_rst, lengths_rst) | |
| cache = [0] * len(lengths_rst) | |
| for i in range(len(lengths_rst)): | |
| cache[align_idx[i]] = recmotion_embeddings[i:i + 1] | |
| self.recmotion_embeddings.extend(cache) | |
| # T2m text encoder | |
| if self.text: | |
| text_emb = self.t2m_textencoder(word_embs, pos_ohot, text_lengths) | |
| text_embeddings = torch.flatten(text_emb, start_dim=1).detach() | |
| self.text_embeddings.append(text_embeddings) | |
| def get_motion_embeddings(self, feats: Tensor, lengths: List[int]): | |
| m_lens = torch.tensor(lengths) | |
| m_lens = torch.div(m_lens, | |
| self.cfg.DATASET.HUMANML3D.UNIT_LEN, | |
| rounding_mode="floor") | |
| m_lens = m_lens // self.cfg.DATASET.HUMANML3D.UNIT_LEN | |
| mov = self.t2m_moveencoder(feats[..., :-4]).detach() | |
| emb = self.t2m_motionencoder(mov, m_lens) | |
| # [bs, nlatent*ndim] <= [bs, nlatent, ndim] | |
| return torch.flatten(emb, start_dim=1).detach() | |