Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import scipy.linalg | |
| import torch | |
| from torch import linalg | |
| import sys | |
| def l2_norm(x1, x2, dim): | |
| return torch.linalg.vector_norm(x1 - x2, ord=2, dim=dim) | |
| def variance(x, T, dim): | |
| mean = x.mean(dim) | |
| out = (x - mean)**2 | |
| out = out.sum(dim) | |
| return out / (T - 1) | |
| def sqrtm(input): | |
| m = input.detach().cpu().numpy().astype(np.float64_) | |
| sqrtm = torch.from_numpy(scipy.linalg.sqrtm(m)).to(input) | |
| return sqrtm | |
| # (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train | |
| def euclidean_distance_matrix(matrix1, matrix2): | |
| """ | |
| Params: | |
| -- matrix1: N1 x D | |
| -- matrix2: N2 x D | |
| Returns: | |
| -- dist: N1 x N2 | |
| dist[i, j] == distance(matrix1[i], matrix2[j]) | |
| """ | |
| assert matrix1.shape[1] == matrix2.shape[1] | |
| d1 = -2 * torch.mm(matrix1, matrix2.T) # shape (num_test, num_train) | |
| d2 = torch.sum(torch.square(matrix1), axis=1, | |
| keepdims=True) # shape (num_test, 1) | |
| d3 = torch.sum(torch.square(matrix2), axis=1) # shape (num_train, ) | |
| dists = torch.sqrt(d1 + d2 + d3) # broadcasting | |
| return dists | |
| def euclidean_distance_matrix_np(matrix1, matrix2): | |
| """ | |
| Params: | |
| -- matrix1: N1 x D | |
| -- matrix2: N2 x D | |
| Returns: | |
| -- dist: N1 x N2 | |
| dist[i, j] == distance(matrix1[i], matrix2[j]) | |
| """ | |
| assert matrix1.shape[1] == matrix2.shape[1] | |
| d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train) | |
| d2 = np.sum(np.square(matrix1), axis=1, | |
| keepdims=True) # shape (num_test, 1) | |
| d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, ) | |
| dists = np.sqrt(d1 + d2 + d3) # broadcasting | |
| return dists | |
| def calculate_top_k(mat, top_k): | |
| size = mat.shape[0] | |
| gt_mat = (torch.unsqueeze(torch.arange(size), | |
| 1).to(mat.device).repeat_interleave(size, 1)) | |
| bool_mat = mat == gt_mat | |
| correct_vec = False | |
| top_k_list = [] | |
| for i in range(top_k): | |
| # print(correct_vec, bool_mat[:, i]) | |
| correct_vec = correct_vec | bool_mat[:, i] | |
| # print(correct_vec) | |
| top_k_list.append(correct_vec[:, None]) | |
| top_k_mat = torch.cat(top_k_list, dim=1) | |
| return top_k_mat | |
| def calculate_activation_statistics(activations): | |
| """ | |
| Params: | |
| -- activation: num_samples x dim_feat | |
| Returns: | |
| -- mu: dim_feat | |
| -- sigma: dim_feat x dim_feat | |
| """ | |
| activations = activations.cpu().numpy() | |
| mu = np.mean(activations, axis=0) | |
| sigma = np.cov(activations, rowvar=False) | |
| return mu, sigma | |
| def calculate_activation_statistics_np(activations): | |
| """ | |
| Params: | |
| -- activation: num_samples x dim_feat | |
| Returns: | |
| -- mu: dim_feat | |
| -- sigma: dim_feat x dim_feat | |
| """ | |
| mu = np.mean(activations, axis=0) | |
| cov = np.cov(activations, rowvar=False) | |
| return mu, cov | |
| # def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
| # """Numpy implementation of the Frechet Distance. | |
| # The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
| # and X_2 ~ N(mu_2, C_2) is | |
| # d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
| # Stable version by Dougal J. Sutherland. | |
| # Params: | |
| # -- mu1 : Numpy array containing the activations of a layer of the | |
| # inception net (like returned by the function 'get_predictions') | |
| # for generated samples. | |
| # -- mu2 : The sample mean over activations, precalculated on an | |
| # representative data set. | |
| # -- sigma1: The covariance matrix over activations for generated samples. | |
| # -- sigma2: The covariance matrix over activations, precalculated on an | |
| # representative data set. | |
| # Returns: | |
| # -- : The Frechet Distance. | |
| # """ | |
| # mu1 = torch.atleast_1d(mu1) | |
| # mu2 = torch.atleast_1d(mu2) | |
| # sigma1 = torch.atleast_2d(sigma1) | |
| # sigma2 = torch.atleast_2d(sigma2) | |
| # assert mu1.shape == mu2.shape, \ | |
| # 'Training and test mean vectors have different lengths' | |
| # assert sigma1.shape == sigma2.shape, \ | |
| # 'Training and test covariances have different dimensions' | |
| # diff = mu1 - mu2 | |
| # # Product might be almost singular | |
| # # covmean, _ = sqrtm(sigma1.dot(sigma2), disp=False) | |
| # covmean = sqrtm(torch.mm(sigma1,sigma2)) | |
| # if not torch.isfinite(covmean).all(): | |
| # msg = ('fid calculation produces singular product; ' | |
| # 'adding %s to diagonal of cov estimates') % eps | |
| # print(msg) | |
| # offset = torch.eye(sigma1.shape[0]) * eps | |
| # # covmean = sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
| # covmean = sqrtm(torch.mm(sigma1+ offset,sigma2+ offset)) | |
| # # Numerical error might give slight imaginary component | |
| # if torch.is_complex(covmean): | |
| # if not torch.allclose(torch.diagonal(covmean).imag, 0, atol=1e-3): | |
| # m = torch.max(torch.abs(covmean.imag)) | |
| # raise ValueError('Imaginary component {}'.format(m)) | |
| # covmean = covmean.real | |
| # tr_covmean = torch.trace(covmean) | |
| # return (diff.dot(diff) + torch.trace(sigma1) + | |
| # torch.trace(sigma2) - 2 * tr_covmean) | |
| def calculate_frechet_distance_np(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
| """Numpy implementation of the Frechet Distance. | |
| The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
| and X_2 ~ N(mu_2, C_2) is | |
| d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
| Stable version by Dougal J. Sutherland. | |
| Params: | |
| -- mu1 : Numpy array containing the activations of a layer of the | |
| inception net (like returned by the function 'get_predictions') | |
| for generated samples. | |
| -- mu2 : The sample mean over activations, precalculated on an | |
| representative data set. | |
| -- sigma1: The covariance matrix over activations for generated samples. | |
| -- sigma2: The covariance matrix over activations, precalculated on an | |
| representative data set. | |
| Returns: | |
| -- : The Frechet Distance. | |
| """ | |
| mu1 = np.atleast_1d(mu1) | |
| mu2 = np.atleast_1d(mu2) | |
| sigma1 = np.atleast_2d(sigma1) | |
| sigma2 = np.atleast_2d(sigma2) | |
| assert (mu1.shape == mu2.shape | |
| ), "Training and test mean vectors have different lengths" | |
| assert (sigma1.shape == sigma2.shape | |
| ), "Training and test covariances have different dimensions" | |
| diff = mu1 - mu2 | |
| # Product might be almost singular | |
| covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
| if not np.isfinite(covmean).all(): | |
| msg = ("fid calculation produces singular product; " | |
| "adding %s to diagonal of cov estimates") % eps | |
| print(msg) | |
| offset = np.eye(sigma1.shape[0]) * eps | |
| covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
| # Numerical error might give slight imaginary component | |
| if np.iscomplexobj(covmean): | |
| if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
| m = np.max(np.abs(covmean.imag)) | |
| raise ValueError("Imaginary component {}".format(m)) | |
| # print("Imaginary component {}".format(m)) | |
| covmean = covmean.real | |
| tr_covmean = np.trace(covmean) | |
| return diff.dot(diff) + np.trace(sigma1) + np.trace( | |
| sigma2) - 2 * tr_covmean | |
| def calculate_diversity(activation, diversity_times): | |
| assert len(activation.shape) == 2 | |
| assert activation.shape[0] > diversity_times | |
| num_samples = activation.shape[0] | |
| first_indices = np.random.choice(num_samples, | |
| diversity_times, | |
| replace=False) | |
| second_indices = np.random.choice(num_samples, | |
| diversity_times, | |
| replace=False) | |
| dist = linalg.norm(activation[first_indices] - activation[second_indices], | |
| axis=1) | |
| return dist.mean() | |
| def calculate_diversity_np(activation, diversity_times): | |
| assert len(activation.shape) == 2 | |
| assert activation.shape[0] > diversity_times | |
| num_samples = activation.shape[0] | |
| first_indices = np.random.choice(num_samples, | |
| diversity_times, | |
| replace=False) | |
| second_indices = np.random.choice(num_samples, | |
| diversity_times, | |
| replace=False) | |
| dist = scipy.linalg.norm(activation[first_indices] - | |
| activation[second_indices], | |
| axis=1) | |
| return dist.mean() | |
| def calculate_multimodality_np(activation, multimodality_times): | |
| assert len(activation.shape) == 3 | |
| assert activation.shape[1] > multimodality_times | |
| num_per_sent = activation.shape[1] | |
| first_dices = np.random.choice(num_per_sent, | |
| multimodality_times, | |
| replace=False) | |
| second_dices = np.random.choice(num_per_sent, | |
| multimodality_times, | |
| replace=False) | |
| dist = scipy.linalg.norm(activation[:, first_dices] - | |
| activation[:, second_dices], | |
| axis=2) | |
| return dist.mean() | |
| # motion reconstructions metrics | |
| def batch_compute_similarity_transform_torch(S1, S2): | |
| """ | |
| Computes a similarity transform (sR, t) that takes | |
| a set of 3D points S1 (3 x N) closest to a set of 3D points S2, | |
| where R is an 3x3 rotation matrix, t 3x1 translation, s scale. | |
| i.e. solves the orthogonal Procrutes problem. | |
| """ | |
| transposed = False | |
| if S1.shape[0] != 3 and S1.shape[0] != 2: | |
| S1 = S1.permute(0, 2, 1) | |
| S2 = S2.permute(0, 2, 1) | |
| transposed = True | |
| assert S2.shape[1] == S1.shape[1] | |
| # 1. Remove mean. | |
| mu1 = S1.mean(axis=-1, keepdims=True) | |
| mu2 = S2.mean(axis=-1, keepdims=True) | |
| X1 = S1 - mu1 | |
| X2 = S2 - mu2 | |
| # 2. Compute variance of X1 used for scale. | |
| var1 = torch.sum(X1**2, dim=1).sum(dim=1) | |
| # 3. The outer product of X1 and X2. | |
| K = X1.bmm(X2.permute(0, 2, 1)) | |
| # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are | |
| # singular vectors of K. | |
| U, s, V = torch.svd(K) | |
| # Construct Z that fixes the orientation of R to get det(R)=1. | |
| Z = torch.eye(U.shape[1], device=S1.device).unsqueeze(0) | |
| Z = Z.repeat(U.shape[0], 1, 1) | |
| Z[:, -1, -1] *= torch.sign(torch.det(U.bmm(V.permute(0, 2, 1)))) | |
| # Construct R. | |
| R = V.bmm(Z.bmm(U.permute(0, 2, 1))) | |
| # 5. Recover scale. | |
| scale = torch.cat([torch.trace(x).unsqueeze(0) for x in R.bmm(K)]) / var1 | |
| # 6. Recover translation. | |
| t = mu2 - (scale.unsqueeze(-1).unsqueeze(-1) * (R.bmm(mu1))) | |
| # 7. Error: | |
| S1_hat = scale.unsqueeze(-1).unsqueeze(-1) * R.bmm(S1) + t | |
| if transposed: | |
| S1_hat = S1_hat.permute(0, 2, 1) | |
| return S1_hat, (scale, R, t) | |
| def compute_mpjpe(preds, | |
| target, | |
| valid_mask=None, | |
| pck_joints=None, | |
| sample_wise=True): | |
| """ | |
| Mean per-joint position error (i.e. mean Euclidean distance) | |
| often referred to as "Protocol #1" in many papers. | |
| """ | |
| assert preds.shape == target.shape, print(preds.shape, | |
| target.shape) # BxJx3 | |
| mpjpe = torch.norm(preds - target, p=2, dim=-1) # BxJ | |
| if pck_joints is None: | |
| if sample_wise: | |
| mpjpe_seq = ((mpjpe * valid_mask.float()).sum(-1) / | |
| valid_mask.float().sum(-1) | |
| if valid_mask is not None else mpjpe.mean(-1)) | |
| else: | |
| mpjpe_seq = mpjpe[valid_mask] if valid_mask is not None else mpjpe | |
| return mpjpe_seq | |
| else: | |
| mpjpe_pck_seq = mpjpe[:, pck_joints] | |
| return mpjpe_pck_seq | |
| def align_by_parts(joints, align_inds=None): | |
| if align_inds is None: | |
| return joints | |
| pelvis = joints[:, align_inds].mean(1) | |
| return joints - torch.unsqueeze(pelvis, dim=1) | |
| def calc_mpjpe(preds, target, align_inds=[0], sample_wise=True, trans=None): | |
| # Expects BxJx3 | |
| valid_mask = target[:, :, 0] != -2.0 | |
| # valid_mask = torch.BoolTensor(target[:, :, 0].shape) | |
| if align_inds is not None: | |
| preds_aligned = align_by_parts(preds, align_inds=align_inds) | |
| if trans is not None: | |
| preds_aligned += trans | |
| target_aligned = align_by_parts(target, align_inds=align_inds) | |
| else: | |
| preds_aligned, target_aligned = preds, target | |
| mpjpe_each = compute_mpjpe(preds_aligned, | |
| target_aligned, | |
| valid_mask=valid_mask, | |
| sample_wise=sample_wise) | |
| return mpjpe_each | |
| def calc_accel(preds, target): | |
| """ | |
| Mean joint acceleration error | |
| often referred to as "Protocol #1" in many papers. | |
| """ | |
| assert preds.shape == target.shape, print(preds.shape, | |
| target.shape) # BxJx3 | |
| assert preds.dim() == 3 | |
| # Expects BxJx3 | |
| # valid_mask = torch.BoolTensor(target[:, :, 0].shape) | |
| accel_gt = target[:-2] - 2 * target[1:-1] + target[2:] | |
| accel_pred = preds[:-2] - 2 * preds[1:-1] + preds[2:] | |
| normed = torch.linalg.norm(accel_pred - accel_gt, dim=-1) | |
| accel_seq = normed.mean(1) | |
| return accel_seq | |
| def calc_pampjpe(preds, target, sample_wise=True, return_transform_mat=False): | |
| # Expects BxJx3 | |
| target, preds = target.float(), preds.float() | |
| # extracting the keypoints that all samples have valid annotations | |
| # valid_mask = (target[:, :, 0] != -2.).sum(0) == len(target) | |
| # preds_tranformed, PA_transform = batch_compute_similarity_transform_torch(preds[:, valid_mask], target[:, valid_mask]) | |
| # pa_mpjpe_each = compute_mpjpe(preds_tranformed, target[:, valid_mask], sample_wise=sample_wise) | |
| preds_tranformed, PA_transform = batch_compute_similarity_transform_torch( | |
| preds, target) | |
| pa_mpjpe_each = compute_mpjpe(preds_tranformed, | |
| target, | |
| sample_wise=sample_wise) | |
| if return_transform_mat: | |
| return pa_mpjpe_each, PA_transform | |
| else: | |
| return pa_mpjpe_each | |
| # from action2motion | |
| def calculate_diversity_multimodality(activations, | |
| labels, | |
| num_labels, | |
| diversity_times=200, | |
| multimodality_times=20): | |
| labels = labels.long() | |
| num_motions = activations.shape[0] # len(labels) | |
| diversity = 0 | |
| first_indices = np.random.randint(0, num_motions, diversity_times) | |
| second_indices = np.random.randint(0, num_motions, diversity_times) | |
| for first_idx, second_idx in zip(first_indices, second_indices): | |
| diversity += torch.dist(activations[first_idx, :], | |
| activations[second_idx, :]) | |
| diversity /= diversity_times | |
| multimodality = 0 | |
| label_quotas = np.zeros(num_labels) | |
| label_quotas[labels.unique( | |
| )] = multimodality_times # if a label does not appear in batch, its quota remains zero | |
| while np.any(label_quotas > 0): | |
| # print(label_quotas) | |
| first_idx = np.random.randint(0, num_motions) | |
| first_label = labels[first_idx] | |
| if not label_quotas[first_label]: | |
| continue | |
| second_idx = np.random.randint(0, num_motions) | |
| second_label = labels[second_idx] | |
| while first_label != second_label: | |
| second_idx = np.random.randint(0, num_motions) | |
| second_label = labels[second_idx] | |
| label_quotas[first_label] -= 1 | |
| first_activation = activations[first_idx, :] | |
| second_activation = activations[second_idx, :] | |
| multimodality += torch.dist(first_activation, second_activation) | |
| multimodality /= (multimodality_times * num_labels) | |
| return diversity, multimodality | |
| def calculate_fid(statistics_1, statistics_2): | |
| return calculate_frechet_distance_np(statistics_1[0], statistics_1[1], | |
| statistics_2[0], statistics_2[1]) | |
| # from: https://github.com/abdulfatir/gan-metrics-pytorch/blob/master/kid_score.py | |
| def polynomial_mmd_averages(codes_g, | |
| codes_r, | |
| n_subsets=50, | |
| subset_size=1000, | |
| ret_var=True, | |
| output=sys.stdout, | |
| **kernel_args): | |
| m = min(codes_g.shape[0], codes_r.shape[0]) | |
| mmds = np.zeros(n_subsets) | |
| if ret_var: | |
| vars = np.zeros(n_subsets) | |
| choice = np.random.choice | |
| replace = subset_size < len(codes_g) | |
| for i in range(n_subsets): | |
| g = codes_g[choice(len(codes_g), subset_size, replace=replace)] | |
| r = codes_r[choice(len(codes_r), subset_size, replace=replace)] | |
| o = polynomial_mmd(g, r, **kernel_args, var_at_m=m, ret_var=ret_var) | |
| if ret_var: | |
| mmds[i], vars[i] = o | |
| else: | |
| mmds[i] = o | |
| return (mmds, vars) if ret_var else mmds | |
| def polynomial_mmd(codes_g, | |
| codes_r, | |
| degree=3, | |
| gamma=None, | |
| coef0=1, | |
| var_at_m=None, | |
| ret_var=True): | |
| from sklearn.metrics.pairwise import polynomial_kernel | |
| # use k(x, y) = (gamma <x, y> + coef0)^degree | |
| # default gamma is 1 / dim | |
| X = codes_g | |
| Y = codes_r | |
| K_XX = polynomial_kernel(X, degree=degree, gamma=gamma, coef0=coef0) | |
| K_YY = polynomial_kernel(Y, degree=degree, gamma=gamma, coef0=coef0) | |
| K_XY = polynomial_kernel(X, Y, degree=degree, gamma=gamma, coef0=coef0) | |
| return _mmd2_and_variance(K_XX, | |
| K_XY, | |
| K_YY, | |
| var_at_m=var_at_m, | |
| ret_var=ret_var) | |
| def _mmd2_and_variance(K_XX, | |
| K_XY, | |
| K_YY, | |
| unit_diagonal=False, | |
| mmd_est='unbiased', | |
| block_size=1024, | |
| var_at_m=None, | |
| ret_var=True): | |
| # based on | |
| # https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd.py | |
| # but changed to not compute the full kernel matrix at once | |
| m = K_XX.shape[0] | |
| assert K_XX.shape == (m, m) | |
| assert K_XY.shape == (m, m) | |
| assert K_YY.shape == (m, m) | |
| if var_at_m is None: | |
| var_at_m = m | |
| # Get the various sums of kernels that we'll use | |
| # Kts drop the diagonal, but we don't need to compute them explicitly | |
| if unit_diagonal: | |
| diag_X = diag_Y = 1 | |
| sum_diag_X = sum_diag_Y = m | |
| sum_diag2_X = sum_diag2_Y = m | |
| else: | |
| diag_X = np.diagonal(K_XX) | |
| diag_Y = np.diagonal(K_YY) | |
| sum_diag_X = diag_X.sum() | |
| sum_diag_Y = diag_Y.sum() | |
| sum_diag2_X = _sqn(diag_X) | |
| sum_diag2_Y = _sqn(diag_Y) | |
| Kt_XX_sums = K_XX.sum(axis=1) - diag_X | |
| Kt_YY_sums = K_YY.sum(axis=1) - diag_Y | |
| K_XY_sums_0 = K_XY.sum(axis=0) | |
| K_XY_sums_1 = K_XY.sum(axis=1) | |
| Kt_XX_sum = Kt_XX_sums.sum() | |
| Kt_YY_sum = Kt_YY_sums.sum() | |
| K_XY_sum = K_XY_sums_0.sum() | |
| if mmd_est == 'biased': | |
| mmd2 = ((Kt_XX_sum + sum_diag_X) / (m * m) + (Kt_YY_sum + sum_diag_Y) / | |
| (m * m) - 2 * K_XY_sum / (m * m)) | |
| else: | |
| assert mmd_est in {'unbiased', 'u-statistic'} | |
| mmd2 = (Kt_XX_sum + Kt_YY_sum) / (m * (m - 1)) | |
| if mmd_est == 'unbiased': | |
| mmd2 -= 2 * K_XY_sum / (m * m) | |
| else: | |
| mmd2 -= 2 * (K_XY_sum - np.trace(K_XY)) / (m * (m - 1)) | |
| if not ret_var: | |
| return mmd2 | |
| Kt_XX_2_sum = _sqn(K_XX) - sum_diag2_X | |
| Kt_YY_2_sum = _sqn(K_YY) - sum_diag2_Y | |
| K_XY_2_sum = _sqn(K_XY) | |
| dot_XX_XY = Kt_XX_sums.dot(K_XY_sums_1) | |
| dot_YY_YX = Kt_YY_sums.dot(K_XY_sums_0) | |
| m1 = m - 1 | |
| m2 = m - 2 | |
| zeta1_est = ( | |
| 1 / (m * m1 * m2) * | |
| (_sqn(Kt_XX_sums) - Kt_XX_2_sum + _sqn(Kt_YY_sums) - Kt_YY_2_sum) - 1 / | |
| (m * m1)**2 * (Kt_XX_sum**2 + Kt_YY_sum**2) + 1 / (m * m * m1) * | |
| (_sqn(K_XY_sums_1) + _sqn(K_XY_sums_0) - 2 * K_XY_2_sum) - | |
| 2 / m**4 * K_XY_sum**2 - 2 / (m * m * m1) * (dot_XX_XY + dot_YY_YX) + | |
| 2 / (m**3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum) | |
| zeta2_est = (1 / (m * m1) * (Kt_XX_2_sum + Kt_YY_2_sum) - 1 / (m * m1)**2 * | |
| (Kt_XX_sum**2 + Kt_YY_sum**2) + 2 / (m * m) * K_XY_2_sum - | |
| 2 / m**4 * K_XY_sum**2 - 4 / (m * m * m1) * | |
| (dot_XX_XY + dot_YY_YX) + 4 / (m**3 * m1) * | |
| (Kt_XX_sum + Kt_YY_sum) * K_XY_sum) | |
| var_est = (4 * (var_at_m - 2) / (var_at_m * (var_at_m - 1)) * zeta1_est + | |
| 2 / (var_at_m * (var_at_m - 1)) * zeta2_est) | |
| return mmd2, var_est | |
| def _sqn(arr): | |
| flat = np.ravel(arr) | |
| return flat.dot(flat) | |
| def calculate_kid(real_activations, generated_activations): | |
| kid_values = polynomial_mmd_averages(real_activations, | |
| generated_activations, | |
| n_subsets=100) | |
| results = (kid_values[0].mean(), kid_values[0].std()) | |
| return results | |