Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
| # holder of all proprietary rights on this computer program. | |
| # You can only use this computer program if you have closed | |
| # a license agreement with MPG or you get the right to use the computer | |
| # program from someone who is authorized to grant you that right. | |
| # Any use of the computer program without a valid license is prohibited and | |
| # liable to prosecution. | |
| # | |
| # Copyright©2020 Max-Planck-Gesellschaft zur Förderung | |
| # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
| # for Intelligent Systems. All rights reserved. | |
| # | |
| # Contact: ps-license@tuebingen.mpg.de | |
| from typing import List, Dict | |
| from torch import Tensor | |
| def collate_tensor_with_padding(batch: List[Tensor]) -> Tensor: | |
| dims = batch[0].dim() | |
| max_size = [max([b.size(i) for b in batch]) for i in range(dims)] | |
| size = (len(batch),) + tuple(max_size) | |
| canvas = batch[0].new_zeros(size=size) | |
| for i, b in enumerate(batch): | |
| sub_tensor = canvas[i] | |
| for d in range(dims): | |
| sub_tensor = sub_tensor.narrow(d, 0, b.size(d)) | |
| sub_tensor.add_(b) | |
| return canvas | |
| def collate_datastruct_and_text(lst_elements: List) -> Dict: | |
| collate_datastruct = lst_elements[0]["datastruct"].transforms.collate | |
| batch = { | |
| # Collate with padding for the datastruct | |
| "datastruct": collate_datastruct([x["datastruct"] for x in lst_elements]), | |
| # Collate normally for the length | |
| "length": [x["length"] for x in lst_elements], | |
| # Collate the text | |
| "text": [x["text"] for x in lst_elements]} | |
| # add keyid for example | |
| otherkeys = [x for x in lst_elements[0].keys() if x not in batch] | |
| for key in otherkeys: | |
| batch[key] = [x[key] for x in lst_elements] | |
| return batch | |
| def collate_length_and_text(lst_elements: List) -> Dict: | |
| batch = { | |
| "length_0": [x["length_0"] for x in lst_elements], | |
| "length_1": [x["length_1"] for x in lst_elements], | |
| "length_transition": [x["length_transition"] for x in lst_elements], | |
| "length_1_with_transition": [x["length_1_with_transition"] for x in lst_elements], | |
| "text_0": [x["text_0"] for x in lst_elements], | |
| "text_1": [x["text_1"] for x in lst_elements] | |
| } | |
| return batch | |
| def collate_pairs_and_text(lst_elements: List, ) -> Dict: | |
| if 'features_0' not in lst_elements[0]: # test set | |
| collate_datastruct = lst_elements[0]["datastruct"].transforms.collate | |
| batch = {"datastruct": collate_datastruct([x["datastruct"] for x in lst_elements]), | |
| "length_0": [x["length_0"] for x in lst_elements], | |
| "length_1": [x["length_1"] for x in lst_elements], | |
| "length_transition": [x["length_transition"] for x in lst_elements], | |
| "length_1_with_transition": [x["length_1_with_transition"] for x in lst_elements], | |
| "text_0": [x["text_0"] for x in lst_elements], | |
| "text_1": [x["text_1"] for x in lst_elements] | |
| } | |
| else: | |
| batch = {"motion_feats_0": collate_tensor_with_padding([el["features_0"] for el in lst_elements]), | |
| "motion_feats_1": collate_tensor_with_padding([el["features_1"] for el in lst_elements]), | |
| "motion_feats_1_with_transition": collate_tensor_with_padding([el["features_1_with_transition"] for el in lst_elements]), | |
| "length_0": [x["length_0"] for x in lst_elements], | |
| "length_1": [x["length_1"] for x in lst_elements], | |
| "length_transition": [x["length_transition"] for x in lst_elements], | |
| "length_1_with_transition": [x["length_1_with_transition"] for x in lst_elements], | |
| "text_0": [x["text_0"] for x in lst_elements], | |
| "text_1": [x["text_1"] for x in lst_elements] | |
| } | |
| return batch | |
| def collate_text_and_length(lst_elements: Dict) -> Dict: | |
| batch = {"length": [x["length"] for x in lst_elements], | |
| "text": [x["text"] for x in lst_elements]} | |
| # add keyid for example | |
| otherkeys = [x for x in lst_elements[0].keys() if x not in batch and x != "datastruct"] | |
| for key in otherkeys: | |
| batch[key] = [x[key] for x in lst_elements] | |
| return batch | |